K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}\)

\(=\sqrt{6}-\sqrt{2}\)

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

10 tháng 9 2017

\(\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(n+1)\sqrt{n}}<\frac{(\sqrt{n+1}-\sqrt{n}).2\sqrt{n+1}}{(n+1)\sqrt{n}}\)

Hay \(\frac{1}{(n+1)\sqrt{n}}< \frac{2\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài toán:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{(n+1)\sqrt{n}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+....+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}=2-\frac{2}{\sqrt{n+1}}< 2\)

Ta có đpcm.

22 tháng 7 2018

Câu a : Ta có :

\(\dfrac{1}{1+\sqrt{2}}=\dfrac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1-2}=\dfrac{1-\sqrt{2}}{-1}=-1+\sqrt{2}\)

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}=\dfrac{\sqrt{2}-\sqrt{3}}{-1}=-\sqrt{2}+\sqrt{3}\)

.....................

\(\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{\left(\sqrt{n^2-1}+\sqrt{n^2}\right)\left(\sqrt{n^2-1}-\sqrt{n^2}\right)}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{-1}=-\sqrt{n^2-1}+\sqrt{n^2}\)

Thay vào ta được :

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...........-\sqrt{n^2-1}+\sqrt{n^2}\)

\(=-1+\sqrt{n^2}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2018

Câu b:

Đặt biểu thức đã cho là $A$

Ta có:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}(n-1)\) (áp dụng cách tính toán phần a)

Lại có:

\(A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{1+\sqrt{2}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\right)+....+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-3}+\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{\sqrt{n^2-1}}{2}\) (áp dụng cách tính toán của phần a)

Vậy \(\frac{\sqrt{n^2-1}}{2}> A> \frac{n-1}{2}\) hay \(\sqrt{t(t+1)}> A> t\) (đặt \(n=2t+1\) )

\(\sqrt{t(t+1)}< \sqrt{(t+1)(t+1)}=t+1\)

Do đó: \(t+1> A> t\)

\(\Rightarrow \lfloor{A}\rfloor=t=\frac{n}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Đặt \(P=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\)

Ta có:

\(\frac{P}{2}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{4}}+...+\frac{1}{2\sqrt{n}}\)

\(< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}(1)\)

Mà:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{3}+\sqrt{4}}+....+\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n-1}+\sqrt{n}}\)

\(=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{n}-\sqrt{n-1})\)

\(=\sqrt{n}-1(2)\)

Từ \((1);(2)\Rightarrow \frac{P}{2}< \sqrt{n}-1\Rightarrow P< 2\sqrt{n}-2\)

-----------------------

Tương tự:

\(\frac{P}{2}>\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}+\frac{1}{2\sqrt{n}}=\sqrt{n}-\sqrt{2}+\frac{1}{2\sqrt{n}}\)

\(\Rightarrow P> 2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}\)

\(2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}> 2\sqrt{n}-3\Rightarrow P>2\sqrt{n}-3\)

Ta có đpcm.