K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Theo bất đẳng thức cô si, có:

\(\sqrt{1.\dfrac{b+c}{a}}\le\left(1+\dfrac{b+c}{a}\right):2=\dfrac{a+b+c}{2a}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}~~~~~\left(1\right)\)

Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}~~~~~\left(2\right)\)

\(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}~~~~~\left(3\right)\)

Cộng vế theo vế \(\left(1\right);\left(2\right);\left(3\right)\), ta có:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)

17 tháng 10 2021

Áp dụng BĐT cosi: 

\(\sqrt{\dfrac{b+c}{a}}\le\dfrac{\dfrac{b+c}{a}+1}{2}=\dfrac{\dfrac{a+b+c}{a}}{2}=\dfrac{a+b+c}{2a}\\ \Leftrightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Cmtt \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{c+a}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế theo vế 3 BĐT trên:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\Leftrightarrow a+b+c=2\left(a+b+c\right)\)

\(\Leftrightarrow a+b+c=0\) (vô lí vì \(a,b,c>0\))

Do đó dấu "=" ko xảy ra hay \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\)

\(\dfrac{\dfrac{b+c}{a}+\dfrac{a}{a}}{2}>=\sqrt{\dfrac{b+c}{a}\cdot\dfrac{a}{a}}\)

=>\(\dfrac{a+b+c}{2a}>=\sqrt{\dfrac{b+c}{a}}\)

=>\(\sqrt{\dfrac{a}{b+c}}>=\dfrac{2a}{a+b+c}\)

Tương tự, ta có: \(\sqrt{\dfrac{b}{a+c}}>=\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}>=\dfrac{2c}{a+b+}\)

=>A>=2

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Đặt \(\left ( \frac{\sqrt{a^2+b^2}}{c},\frac{\sqrt{b^2+c^2}}{a}, \frac{\sqrt{c^2+a^2}}{b} \right )=(x,y,z)\)

BĐT cần chứng minh tương đương với:
\(x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)\((*)\)

------------------------------------------------------------------

Từ cách đặt $x,y,z$ ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\)

Áp dụng BĐT Bunhiacopxky:

\(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}=\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\right)\left(\frac{x^2+1}{x^2}+\frac{y^2+1}{y^2}+\frac{z^2+1}{z^2}\right)\)

\(\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

\(\Leftrightarrow 3\geq 2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Leftrightarrow xyz\geq \frac{2}{3}(x+y+z)\)

\(\Rightarrow xyz(x+y+z)\geq \frac{2}{3}(x+y+z)^2\)

Áp dụng BĐT AM_GM ta lại có:

\((x+y+z)^2\geq 3(xy+yz+xz)\). Do đó:

\(xyz(x+y+z)\geq 2(xy+yz+xz)\)

\(\Leftrightarrow x+y+z\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Đúng theo \((*)\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

20 tháng 1 2018

áp dụng bat dang thuc bunhiacóki

ta có \(\dfrac{\sqrt{a^2+b^2}}{c}\ge\dfrac{a+b}{\sqrt{2}c}\)

ttu vt \(\ge\dfrac{1}{\sqrt{2}}\left(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)

=\(\dfrac{a}{\sqrt{2}}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{b}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+\dfrac{c}{\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) (1)

áp dung bdt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

ta có (1) \(\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\)

tiếp tục áp dụng bunhia ta có \(\dfrac{a}{\sqrt{2}}.\dfrac{4}{b+c}\ge\dfrac{a}{\sqrt{2}}.\dfrac{4}{\sqrt{2\left(b^2+c^2\right)}}=\dfrac{2a}{\sqrt{b^2+c^2}}\)

ttuong tu ta có \(vt\ge2\left(\dfrac{a}{\sqrt{b^2+c2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\left(dpcm\right)\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

23 tháng 6 2021

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

23 tháng 6 2021

uầy CTV luôn

28 tháng 3 2021

Áp dụng BĐT BSC:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{2}\)

\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$

$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$

$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$

$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$

\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

 (đpcm)

 

 

 

 

12 tháng 9 2021

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow c+\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\-c=\sqrt{\left(a+c\right)\left(b+c\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\c^2=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\ab+bc+ac=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\left(đúng\right)\)

 

Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0

Khi đó:

(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)

=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2

=a+b+2c+2|c|=a+b+2c+2|c|

Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c

Do đó:

(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b

⇒√a+c+√b+c=√a+b