K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2021

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

14 tháng 7 2017

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

11 tháng 4 2023

kh có ý 2 à cậu?

NV
14 tháng 1 2021

\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)

\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)

Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)

Ta có: \(b^3+2-b\ge3b-b=2b>0\)

\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)

\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)

\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

21 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+2c\right)}=\frac{\sqrt{3a\left(b+2c\right)}}{\sqrt{3}}\le\frac{\frac{3a+b+2c}{2}}{\sqrt{3}}=\frac{3a+b+2c}{2\sqrt{3}}\)

Tương tự ta cũng có:\(\sqrt{b\left(c+2a\right)}\le\frac{3b+c+2a}{2\sqrt{3}}\)

               \(\sqrt{c\left(a+2b\right)}\le\frac{3c+a+2b}{2\sqrt{3}}\)

Cộng theo vế các BĐT lại ta được:

\(VT\le\frac{3a+b+2c}{2\sqrt{3}}+\frac{3b+c+2a}{2\sqrt{3}}+\frac{3c+a+2b}{2\sqrt{3}}=\frac{6a+6b+6c}{2\sqrt{3}}=\frac{6.4}{2\sqrt{3}}=4\sqrt{3}\)

21 tháng 12 2018

Dấu "=" xảy ra khi \(a=b=c=\frac{4}{3}\)