K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1

Bài toán chia kẹo kinh điển đây mà.

Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:

loading...

Bây giờ có số tự nhiên n, ta phân tích nó như sau:

\(n=1+1+1+...+1+1+1\)

Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:

\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)

Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6. 

Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\)  tấm vách ngăn.

Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).

Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.

Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.

//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.

Khi đó:

\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)

\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)

Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm. 

Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:

\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên

Công thức đầu của em có vẻ bị sai :D

Wow, big brain, cảm ơn thầy nhiều ;) (mà hình như 2 công thức đó bằng nhau vì \(C^k_n=C^{n-k}_n\) ấy thầy).

NV
13 tháng 10 2019

\(\Leftrightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}-7\le0\)

Đặt \(P=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}-7\)

Không mất tỉnh tổng quát, giả sử \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow ab+bc\ge b^2+ac\Rightarrow\left\{{}\begin{matrix}\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\\1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow P\le\frac{a}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{a}+2-7=2\left(\frac{a}{c}+\frac{c}{a}\right)-5\)

Do \(1\le a\le c\le2\Rightarrow1\le\frac{c}{a}\le2\)

Đặt \(\frac{c}{a}=x\Rightarrow1\le x\le2\)

\(\Rightarrow P\le2\left(x+\frac{1}{x}\right)-5=\frac{2x^2-5x+2}{x}=\frac{\left(2x-1\right)\left(x-2\right)}{x}\le0\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị

13 tháng 10 2019

=\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng hệ quả của bđt côsi \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b >0 ta có BĐT cuối cùng luôn đúng

vậy .....

NV
3 tháng 3 2020

Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x;y;z\le2\)

\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}=9\)

Dấu "=" xảy ra khi \(x=y=z\)

Nhưng như vậy thì dễ quá, nên chắc đây là 1 bài toán tìm GTLN

Tìm GTLN thì nó chính là bài toán này, làm biếng gõ lại:

Câu hỏi của Trần Minh Hiển - Toán lớp 9 | Học trực tuyến

6 tháng 3 2020

vâng em ghi sai đề ạ :)

18 tháng 1 2020

2.

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bài 1:
Ta có:
$x+y+2=xy$

$\Leftrightarrow xy-x-y=2$

$\Leftrightarrow x(y-1)-(y-1)=3$

$\Leftrightarrow (x-1)(y-1)=3$
Đến đây là dạng phương trình tích đơn giản. Ta xét các TH sau:

TH1: $x-1=1$ và $y-1=3$

$\Rightarrow x=2; y=4$

TH2: $x-1=-1$ và $y-1=-3$

$\Rightarrow x=0; y=-2$

Do vai trò $x,y$ như nhau nên $x=4;y=2$ và $x=-2;y=0$ cũng thỏa mãn

Vậy.......

Vậy.........