K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Ta chứng minh bổ đề \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3-xy\left(x+y\right)\ge0\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\) (đúng)

\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\Rightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

\(\Rightarrow\dfrac{1}{x^3+y^3+1}=\dfrac{1}{x^3+y^3+xyz}\le\dfrac{1}{xy\left(x+y+z\right)}\)

\(=\dfrac{xyz}{xy\left(x+y+z\right)}=\dfrac{z}{x+y+z}\). Tương tự ta cũng có:

\(\dfrac{1}{y^3+z^3+1}\le\dfrac{x}{x+y+z};\dfrac{1}{z^3+x^3+1}\le\dfrac{y}{x+y+z}\)

Cộng theo vế các BĐT trên ta có:

\(A\le\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)

Đẳng thức xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)

\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)

\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)

21 tháng 2 2017

x,y,z là số thực à khó đấy số dương thì mk còn làm đc 

chứ số thực mk chịu

21 tháng 2 2017

Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)

CM tương tự với các phân thức còn lại

Cộng vế theo vế các BĐT đó ta được:

\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy Max A=1 <=> x=y=z=1

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

11 tháng 5 2018

áp dụng bđt cosi ta có:

\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)

tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)

dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)

\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)

\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1

khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

vậy max A là 1 khi x=y=z=1

11 tháng 5 2018

Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)

Dấu = xra khi a=b=c và abc=1 =>a=b=c=1

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)