K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

5 tháng 10 2019

Dat \(P=\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\)

Ta co:

\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}=\frac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\frac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tuong tu:

\(\frac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\frac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\frac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

\(\Rightarrow P\ge\frac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

Dau '=' xay ra khi \(a=b=c\)

11 tháng 11 2018

Theo BĐT \(AM-GM\) ta có :

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tương tự ta có :

\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

Cộng từng vế BĐT :

\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

\("="\Leftrightarrow a=b=c\)

3 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương với \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge12\)

 Áp dụng bất đẳng thức AM-GM ta có  

\(1=a^2+b^2+c^2+2abc\ge4\sqrt[4]{2a^3b^3c^3}\)

\(\Rightarrow abc\le\frac{1}{8};\Rightarrow\text{​​}\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{64}=12\)

suy ra điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 10 2021

\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)

\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)

\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)

\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Cách khác:

Áp dụng BĐT Bunhiacopxky:

$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$

$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$

Tương tự với các căn thức còn lại và cộng theo vế:

$M\sqrt{5}\geq 5(a+b+c)$

$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)

Cộng theo vế:

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

26 tháng 7 2018

BĐT AM-GM là BĐT Côsi hở ???

NV
17 tháng 4 2022

\(\left(a+a+b\right)\left(b+b+c\right)\left(c+c+a\right)\ge3\sqrt[3]{a^2b}.3\sqrt[3]{b^2c}.3\sqrt[3]{c^2a}=27abc\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)