K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
\(4P=\frac{4(x+y+z)(x+y)}{xyzt}=\frac{(x+y+z+t)^2(x+y+z)(x+y)}{xyzt}\)

Áp dụng BĐT AM-GM ta có:

\(4P\geq \frac{4t(x+y+z)(x+y+z)(x+y)}{xyzt}\Leftrightarrow P\geq \frac{(x+y+z)^2(x+y)}{xyz}\)

Tiếp tục áp dụng AM-GM:

\(P\geq \frac{4z(x+y)(x+y)}{xyz}=\frac{4(x+y)^2}{xy}\geq \frac{4.4xy}{xy}=16\)

Vậy GTNN của $P$ là $16$. Giá trị này đạt tại $x+y+z=t; x+y=z; x=y$ hay $t=1; z=\frac{1}{2}; x=y=\frac{1}{4}$ 

NV
27 tháng 1 2021

\(B\ge\dfrac{4\left(x+y+z\right)\left(x+y\right)}{\left(x+y\right)^2zt}=\dfrac{4\left(x+y+z\right)}{\left(x+y\right)zt}\ge\dfrac{16\left(x+y+z\right)}{\left(x+y+z\right)^2t}\)

\(B\ge\dfrac{16}{\left(x+y+z\right)t}\ge\dfrac{64}{\left(x+y+z+t\right)^4}=64\)

\(B_{min}=64\) khi \(\left(x;y;z;t\right)=\left(\dfrac{1}{8};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)

28 tháng 1 2021

Áp dụng BĐT Cô si ta có :

+) \(x+y\ge2\sqrt{xy}\)

+) \(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

+) \(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\) 

Nhân từng vế với vế của các BĐT trên ta có :

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow2\left(x+y\right)\left(x+y+z\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Leftrightarrow B=\dfrac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=z\\x+y+z=t\\x+y+z+t=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{4}\\z=\dfrac{1}{2}\\t=1\end{matrix}\right.\)

Vậy...

13 tháng 6 2017

Ta có: \(\left(x+z\right)\left(y+z\right)=1\)

\(\Rightarrow\left(x+z\right)^2\left(y+z\right)^2=1\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(y+z\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(z+x\right)^2}\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2+\left(y+z\right)^2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2-2\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2+2\) (Vì: (x+z)(y+z)=1 =>2(x+z)(y+z)=2 )

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z-y-z\right)^2+2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\)

Áp dụng bất đẳng thức Cauchy, ta có :

\(\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2\ge2\sqrt{\dfrac{1}{\left(x-y\right)^2}\cdot\left(x-y\right)^2}=2\cdot1=2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2+2=4\)

Vậy \(MinP=4\) khi \(x-y=1\); \(y+z=\dfrac{\sqrt{5}-1}{2}\); \(x+z=\dfrac{2}{\sqrt{5}-1}\)

NV
11 tháng 7 2021

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\sum\dfrac{a^4}{\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)}=\sum\dfrac{a^4bc}{\left(b+1\right)\left(c+1\right)}=\sum\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}\)

Ta có:

\(\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\ge\dfrac{3a}{4}\)

Tương tự và cộng lại:

\(P+\dfrac{a+b+c}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\Rightarrow P\ge\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$

Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:

$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$

Tiếp tục áp dụng AM-GM:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$x+z\geq 2\sqrt{xz}$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$

$\Rightarrow P\geq \frac{1}{2}$

Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$

 

NV
11 tháng 7 2021

\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)

Tương tự và cộng lại:

\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

14 tháng 6 2017

Ta có:

\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)

\(\Rightarrow A\ge16\)

Đấu = xảy ra khi \(t=2z=4x=4y=1\)

15 tháng 6 2017

x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :

=\(x+y\ge2\sqrt{xy}\)

=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

nhân các vế tương ứng ta có:

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

mà x+y+z+t=2

\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)

vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)

28 tháng 12 2017

Từ \(xyzt=1\) ta có: \(\dfrac{1}{x^3\left(yz+zt+ty\right)}=\dfrac{xyzt}{x^3\left(yz+zt+ty\right)}=\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\)

Đánh giá tương tự ta có:

\(pt\Leftrightarrow\dfrac{yzt}{x^2\left(yz+zt+ty\right)}+\dfrac{xzt}{y^2\left(xz+zt+tx\right)}+\dfrac{xyt}{z^2\left(xy+yt+tx\right)}+\dfrac{xyz}{t^2\left(xy+yz+zx\right)}\ge3\left(yzt+xzt+xyt+xyz\right)=3yzt+3xzt+3xyt+3xyz\)

Ta sẽ chứng minh:

\(\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\ge3yzt\). Cộng theo vế rồi suy ra đpcm

T gần đi học r,có gì tối về giải full cho

29 tháng 12 2017

Áp dụng cauchy-schwarz:

\(VT=\sum\dfrac{\dfrac{1}{x^2}}{\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)^2}{3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)}=VF\)

29 tháng 11 2023

\(P=\left(\dfrac{x+2y}{y}\right)\left(\dfrac{y+2z}{z}\right)\left(\dfrac{z+2x}{x}\right)\)

Ta có

\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=\)

\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{x+y+z}=\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2x}{x}-1=\dfrac{z+2x}{y}-1=2\)

\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2x}{x}=\dfrac{z+2x}{y}=3\)

\(\Rightarrow P=3.3.3=27\)

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Lời giải:
Ta có:

\(P=\frac{x^3}{(x-y)(x-z)}+\frac{y^3}{(y-x)(y-z)}+\frac{z^3}{(z-y)(z-x)}\)

\(=\frac{x^3(y-z)+y^3(x-z)+z^3(y-x)}{(x-y)(y-z)(z-x)}\)

\(=\frac{xz(x^2-z^2)+xy(y^2-x^2)+zy(z^2-y^2)}{(x-y)(y-z)(z-x)}\)

\(=\frac{xz(x-z)(x+z)+xy(y-x)(y+x)+zy(z-y)(z+y)}{(x-y)(y-z)(z-x)}\)

\(=\frac{xz(x-z)(2008-y)+xy(y-x)(2008-z)+zy(z-y)(2008-x)}{(x-y)(y-z)(z-x)}\)

\(=\frac{2008[xz(x-z)+xy(y-x)+zy(z-y)-xyz(x-z+y-x+z-y)}{(x-y)(y-z)(z-x)}\)

\(=\frac{2008[xz(x-z)+xy(y-x)+zy(z-y)]}{xz(x-z)+xy(y-x)+zy(z-y)}=2008\)