K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

undefined

NV
1 tháng 7 2021

Đề là: \(Q=\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\) đúng không em nhỉ?

Ta có:

\(Q=\left(1+\dfrac{x+y+z}{x}\right)\left(1+\dfrac{x+y+z}{y}\right)\left(1+\dfrac{x+y+z}{z}\right)\)

\(=\dfrac{\left(x+x+y+z\right)\left(x+y+y+z\right)\left(x+y+z+z\right)}{xyz}\)

\(Q\ge\dfrac{4\sqrt[4]{x^2yz}.4\sqrt[4]{xy^2z}.4\sqrt[4]{xyz^2}}{xyz}=\dfrac{64xyz}{xyz}=64\)

\(Q_{min}=64\) khi \(x=y=z=\dfrac{a}{3}\)

7 tháng 1 2018

A=x^3 +y^3 +z^3+ 2(x/y+z  +y/z+x  +z/x+y)  \(\ge x^3+y^3+z^3+2.\frac{3}{2}\)  (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)

Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)

===> A\(\ge3+3=6\) khi x=y=z=1

21 tháng 9 2019

???

19 tháng 9 2019

Bài này đơn giản nhất nên xơi trước:D

\(A^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(x^2+y^2+z^2\right)=3\) (áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\))

Suy ra \(A\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

8 tháng 2 2017

Câu hỏi của Ngô Hoàng Phúc - Toán lớp 10 | Học trực tuyến

16 tháng 6 2023

Ta có

\(A=\dfrac{4}{x+1}+\dfrac{9}{y+2}+\dfrac{25}{z+3}\)

\(A=\dfrac{2^2}{x+1}+\dfrac{3^2}{y+2}+\dfrac{5^2}{z+3}\)

\(A\ge\dfrac{\left(2+3+5\right)^2}{x+1+y+2+z+3}\) (BĐT Schwarz)

\(A\ge\dfrac{10^2}{10}=10\) (vì \(x+y+z=4\))

ĐTXR \(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}\)

\(\Rightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}=\dfrac{2+3+5}{z+1+y+2+z+3}=1\). Dẫn đến \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\). Vậy, GTNN của A là 10 khi \(\left(x,y,z\right)=\left(1,1,2\right)\)

7 tháng 1 2020

Áp dụng bđt AM-GM ta được:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)

Cộng từng vế các bất đẳng thức trên ta được

\(A+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

8 tháng 1 2020

Cách 2:Dù dài hơn Lê Tài Bảo Châu

\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)

\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)

Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )

Cách 3:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)