K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2014

Xét hiệu A - B là ra thôi mà

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

28 tháng 11 2017

đề hỏi j vậy bn?

28 tháng 11 2017

À tìm GTNN mà mình làm được rồi

16 tháng 5 2020

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

27 tháng 6 2020

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

6 tháng 7 2018

Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)

Nên \(0< x;y;z< \sqrt{3}\)

Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)

\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)

\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)

Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)

\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)

Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)

Dấu = xảy ra khi x=y=z=1

6 tháng 7 2018

Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)

                              Đúng do \(0< x< \sqrt{3}< 16\)

22 tháng 8 2019

\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)

\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

5 tháng 5 2018

Lớn hơn hoặc bằng 3/2 nhé mn

2 tháng 1 2017

Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)

\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)