K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

Ta có \(\log_ab\ge\log_{a+c}\left(b+c\right)\) với \(1< a\le b\) và \(c\ge0\)

Áp dụng với b = a+1 và c = 1 ta được :

 \(\log_a\left(a+1\right)>\log_{a+1}\left(a+2\right)\)

=> Điều phải chứng minh

14 tháng 5 2016

Ta có : 

          \(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)

                                          \(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)  

Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)

Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\)  (**)

Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)

Dấu "=" xảy ra khi c = 0 hoặc a = b

4 tháng 1 2021

Ta có: 

\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)

Mà : 

a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)

P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)

Đặt t=logab

Do b<a<1 => t=logab >1

Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc

P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)

6 tháng 5 2016

Ta thấy rằng do a < b nên \(\log_ab>1\)

Khi đó nếu xét cùng cơ số là b thì : \(\log_a\left(\log_ab\right)>\log_b\left(\log_ab\right)>0\)

Ta cũng có \(\log_ca< 1\) do a < c, suy ra \(0>\log_c\left(\log_ca\right)>\log_b\left(\log_ca\right)\)

Từ đó suy ra :

\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>\log_b\left(\log_ab.\log_bc.\log_ca\right)=0\)

24 tháng 5 2023

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

NV
7 tháng 7 2021

\(a;b>0\Rightarrow3a+2b+1>1\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến

Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)

\(\Rightarrow18a^2+1=3a+6a+1\)

\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)

NV
19 tháng 6 2020

\(P=\frac{1}{2}log_{\frac{a}{b}}a-4log_a\left(a+\frac{b}{4}\right)=\frac{1}{2log_a\frac{a}{b}}-4log_a\left(a+\frac{b}{4}\right)=\frac{1}{2\left(1-log_ab\right)}-4log_a\left(a+\frac{b}{4}\right)\)

Ta có: \(a+\frac{b}{4}\ge2\sqrt{\frac{ab}{4}}=\sqrt{ab}\)

\(\Rightarrow log_a\left(a+\frac{b}{4}\right)\le log_a\sqrt{ab}\) (do \(0< a< 1\))

\(\Rightarrow P\ge\frac{1}{2\left(1-log_ab\right)}-4log_a\sqrt{ab}=\frac{1}{2\left(1-log_ab\right)}-2\left(1+log_ab\right)\)

Đặt \(log_ab=x\Rightarrow0< x< 1\) \(\Rightarrow P\ge\frac{1}{2\left(1-x\right)}-2\left(1+x\right)\)

Xét hàm \(f\left(x\right)=\frac{1}{2\left(1-x\right)}-2\left(1+x\right)\) với \(0< x< 1\)

\(f'\left(x\right)=\frac{1}{2\left(1-x\right)^2}-2=0\Leftrightarrow\frac{1-4\left(1-x\right)^2}{2\left(1-x\right)^2}=0\Rightarrow x=\frac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\frac{1}{2}\right)=-2\)

\(\Rightarrow P\ge-2\Rightarrow P_{min}=-2\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\a=\frac{b}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}log_ab=\frac{1}{2}\\a=\frac{b}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\a=\frac{b}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{16}\\b=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow S=\frac{5}{16}\)