K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2019

Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{(\frac{1}{4})^2}{x^2}+\frac{(\frac{1}{2})^2}{y^2}+\frac{1}{z^2}\geq \frac{(\frac{1}{4}+\frac{1}{2}+1)^2}{x^2+y^2+z^2}\)

hay \(M\geq \frac{49}{16}\)

Vậy $M_{\min}=\frac{49}{16}$

Dấu "=" xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\) hay \(x=\sqrt{\frac{1}{7}}; y=\sqrt{\frac{2}{7}}; z=\sqrt{\frac{4}{7}}\)

27 tháng 11 2019

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)

Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)

27 tháng 11 2019

Cho sửa chỗ dấu "="

\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

1 tháng 4 2018

ta có 
P = 1/16x + 1/4y + 1/z = (1/16x + 4/16y + 16/16z) 
áp dụng BĐT Bunhiacopski ta có 
(1/16x + 4/16y + 16/16z)*(16x + 16y + 16z) >= (1 + 2 + 4)^2 = 49 
=> P.16 >= 49 hay P >= 49/16 
dấu = xảy ra khi 
1/(16x)^2 = 1/64y^2 = 1/16z^2 và x + y + z = 1 
<> 1/16x = 1/8y = 1/4z và x + y + z = 1 
<> 4x = 2y = z và x + y + z = 1 
<> x = 1/7 và y = 2/7 và z = 4/7

10 tháng 9 2022

banhqua

loading...

 

 

 

30 tháng 11 2018

Mạnh ê,tôi vào đc nixk này rồi hehe

30 tháng 11 2018

Duy thoát ra ngay đi

15 tháng 4 2019

Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)

Cộng vế với vế của 3 BĐT trên ta được:

\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

Áp dụng bđt Bunhiacopski ta có

\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)

Dấu "=" xảy ra khi x=y=z=1

NV
4 tháng 1 2019

\(M=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{4}{y^2}+\dfrac{16}{z^2}\right)\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)

\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)

19 tháng 3 2017

Ta có:

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu bằng xảy ra khi  

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)  

19 tháng 3 2017

hahaha hoa tọa cx phải dj hỏi hả

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

16 tháng 6 2023

Ta có

\(A=\dfrac{4}{x+1}+\dfrac{9}{y+2}+\dfrac{25}{z+3}\)

\(A=\dfrac{2^2}{x+1}+\dfrac{3^2}{y+2}+\dfrac{5^2}{z+3}\)

\(A\ge\dfrac{\left(2+3+5\right)^2}{x+1+y+2+z+3}\) (BĐT Schwarz)

\(A\ge\dfrac{10^2}{10}=10\) (vì \(x+y+z=4\))

ĐTXR \(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}\)

\(\Rightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}=\dfrac{2+3+5}{z+1+y+2+z+3}=1\). Dẫn đến \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\). Vậy, GTNN của A là 10 khi \(\left(x,y,z\right)=\left(1,1,2\right)\)