chứng minh rằng không tồn tại x thỏa mãn :x4-x3+2x2-x+1=0
giúp mk vs!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n(n+5) - (n-3)(n+2)
= n2 + 5n - (n2 + 2n - 3n - 6)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n + 1) chia hết cho 6 (Đpcm)
b, (n-1)(n+1) - (n-7)(n-5)
= n2 + n - n - 1 - (n2 - 5n - 7n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36
= 12(n - 3) chia hết cho 12 (Đpcm)
a) n(n+5)-(n-3)(n+2)
=n^2+5n-(n^2+2n-3n+6)
=n^2+5n-n^2-2n+3n-6
=6n-6
=6(n-1) chia het cho 6 voi moi n thuoc z
b) (n-1)(n+1)-(n-7)(n-5)
=n^2+n-n-1-(n^2-5n-7n+35)
=n^2-1-n^2+12n-35
=12n-36
=12(n-3) chia het cho 12 voi moi n thuoc z
a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^4-1)(2^4+1)....(2^32+1)-2^64
=......
=(2^32-1)(2^32+1)-2^64
=2^64-1-2^64=-1
b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2
đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)
\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=.......\)
2B=(5^64-3^64)(5^64+3^64)
2B=5^128-3^128
B=(5^128-3^128)/2 (thế vào đề bài)
=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)
a) A = ( 2-1)(2+1)(22+1)...(232+1)-264
=(22-1)(22+1)(24+1)... -264
=....
=264-1-264=1
câu b tương tự nhá
8y^3 - 12y^2 + 6y + 1 - 2y(4y^2 - 12y + 9) - 12y^2 + 12y
= 8y^3 - 12y^2 + 6y + 1 - 8y^3 + 24y^2 - 18y - 12y^2 + 12y
= 1
=> đpcm
thay x = 1; y = 2 vào biểu thức: 7x (a + 2) - y (a + x) - xa (a + x + y)
đc: 7 (a + 2) - 2 (a + 1) - a (a + 1 + 2)
đặt a + 1 = t có:
7 (t + 1) - 2t - a (t + 2) = 7t + 7 - 2t - at - 2a = (7 - 2- a)t + 7 - 2a= (5 - a)t + 7 - 2a
thay vào đc: (5 - a) (a + 1) + 7 - 2a = 5a + 5 - a2 - a + 7 - 2a = 2a + 12 - a2
vậy giá trị biểu thức trên là: 2a +12 - a2
\(x^2+2x+1\)
\(=x^2+2.x.1+1^2\)
\(=\left(x+1\right)^2\)
@@@@@
\(\frac{x+2}{x+3}< \frac{x+4}{x+5}\)
<=> \(\left(x+2\right)\left(x+5\right)< \left(x+3\right)\left(x+4\right)\)
<=> \(x^2+7x+10< x^2+7x+12\)
<=> \(x^2-x^2+7x-7x+10-12< 0\)
???
mk ko biết
Mình mới hok lớp 6
Ta biến đổi phương trình thành:
\(\left(x^4+2x^2+1\right)-\left(x^3+x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
Với mọi \(x\in R\)ta có \(x^2+1>0\)
và \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Cả 2 nhân tử ở vế trái đều dương nên tích không thể bằng 0. Hay không tồn tại x thỏa mãn đề bài.