Bài 1: chứng tỏ rằng:
a) 2x+5 chia hết cho x+2
b)3x+5 chia hết cho x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số tuổi của Bình và Tuấn là:
18 + 16 = 34 ( tuổi )
Số tuổi của Hải là:
34 : 2 = 17 ( tuổi )
Trung bình cộng số tuổi của Bình ; Tuấn; Hải là:
( 18 + 17 + 16 ) : 3 = 17 ( tuổi )
Tuổi của Minh là:
17 + 2 = 19 ( tuổi )
Tổng số tuổi của 4 bạn Bình; Tuấn; Hải; Minh là:
18 + 16 + 17 + 19 = 70 ( tuổi )
Ta có sơ đồ:
Trung bình cộng 5 bạn Tổng số tuổi của 5 bạn: thanh 4 bạn
Trung bình cộng số tuổi của 5 bạn là:
( 70 - 10 ) : 4 = 15 ( tuổi )
Số tuổi của Thanh là:
15 - 10 = 5 ( tuổi )
Đáp số:
A B C H M N E D O
Bài làm
a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)
=> tứ giác AEDH là hình chữ nhật.
=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )
Gọi giao điểm của AH và ED là O
=> Tam giác OHD cân tại O.
=> \(\widehat{AHD}=\widehat{EDH}\) (1)
Mà tam giác DHC vuông tại D
Mà DN là đường trung tuyến ( do N là trung điểm HC )
=> DN = HN = HC
=> Tam giác DHN cân tại N
=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân ) (2)
Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)
=> \(\widehat{AHC}=\widehat{EDN}\)
hay \(90^0=\widehat{EDN}\)
=> DN vuông góc với ED (3)
Vì tam giác OEH cân tại O ( cmt )
=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân ) (4)
Mà tam giác BEH vuông tại H
Mà EM là trung tuyến ( Do N là trung điểm BH )
=> EM = BM = MH
=> Tam giác EMH cân tại M.
=> \(\widehat{MEH}=\widehat{MHE}\) (5)
Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)
=> \(\widehat{OEM}=\widehat{OHM}\)
hoặc \(\widehat{DEM}=\widehat{AHB}\)
hay \(\widehat{DEM}=90^0\)
=> ME vuông góc với ED (6)
Từ (3) và (6) => ME // DN
=> DEMN là hình thang
Mà \(\widehat{DEM}=90^0\)( cmg )
=> Hình thang DEMN là hình thang vuông ( đpcm )
bài này sử dụng định lý Mê-nê-la-uýt là ra nha. mình nói hướng làm
gọi Q là giao điểm của FG với BD. Ta chứng minh Q cố định bằng cách xác định tỉ số mà Q chia đoạn thẳng BD. Muốn xác định được tỉ số này ta cần bổ sung thêm H là giao điểm của đường tròn FG với đường thẳng AD (trường hợp đặc biệt là M trùng với điểm của cạnh CD, lúc đó FG với đường thẳng AD và ta dễ dàng xác định tỉ số cần tìm)
đặt độ dài cạnh hình thoi là a và đặt x=MD/MC. do tam giác MDE đồng dạng với tam giác MCB nên ta tính được DE=ax, AE=a(x+1), GA/GC=GE/GB=x+1
sử dụng định lý Mê-nê-la-uýt trong tam giác CDE với cát tuyến AF, ta có:
\(\frac{FC}{FE}\cdot\frac{AE}{AD}\cdot\frac{MD}{MC}=1\Rightarrow\frac{FC}{FE}\cdot\left(x+1\right)x=1\Rightarrow\frac{FC}{FE}=\frac{1}{x\left(x+1\right)}\)
áp dụng định lý Mê-nê-la-uýt trong tam giác ACE với cát tuyến GH ta có
\(\frac{HE}{HA}\cdot\frac{GA}{GC}\cdot\frac{FC}{FE}=1\Rightarrow\frac{HE}{HA}\left(x+1\right)\cdot\frac{1}{x\left(x+1\right)}=1\)
\(\Rightarrow\frac{HE}{HA}=x\Rightarrow\frac{HE}{HA-HE}=\frac{1}{1-x}\Rightarrow\frac{HE}{AE}=\frac{x}{1-x}\)
\(\Rightarrow HE=\widehat{CFN}=90^o-\widehat{FCI}\), suy ra:
\(\frac{HE}{HE+DE}=\frac{x+1}{\left(x+1\right)+\left(1-x\right)}\Rightarrow\frac{HE}{HD}=\frac{x+1}{2}\)
áp dụng định lý Mê-nê-la-uýt trong tam giác BDE với cát tuyến QH, ta có
\(\frac{QD}{QB}\cdot\frac{GB}{GE}\cdot\frac{HE}{HD}=1\Rightarrow\frac{QD}{QB}\cdot\frac{1}{x+1}\cdot\frac{x+1}{2}=1\)
như vậy Q chính là trọng tâm của tam giác ABC và đường thẳng FG luôn qua Q cố định
1-lật đật
2-lệ thuộc
3-(chưa nghĩ ra)
nếu đúng thì chúc bạn làm tốt nhé.
Ta có :
456x36+456x61+4 x456+456
=456x(36+61+4+456)
=456x...tự tính
=...tự tính
Umm mình tưởng là cái 456 đó tính là 1 thôi chứ nhỉ ban???
a) (x-1)(2x+5)
b) (x+1)(x-5)
c) [(x+1)^2](x^2+x+1)
d) (x-1)(x^3-x-1)
e) (x+y)(x-y-1)
a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
b) x2 - 4x - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) = (x + 1)(x - 5)
c) x4 + x3 + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)
d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)
e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)
Ta chứng minh chiều nghịch:
Khi tam giác ABC đều, góc A=gócB=gócC=60*
Khi đó cosA+cosB+cosC=3/2(đpcm)
Ta chứng minh chiều thuận
Ta chứng minh cosA+cosB+cosC≤3/2
Thật vậy:
Mà theo gt, cosA+cosB+cosC=3/2
nên ta có tam giác ABC đều(đpcm)
A B C D E F
vẽ AD,BE, CF là các đường cao của tam giác ABC
\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)
ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)
tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)
do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)
do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều
Hình tự vẽ nha bạn
a) Câu a dễ dàng chứng minh 2 tam giác đồng dạng theo TH g-g
(Các cặp góc bằng nhau dễ suy ra từ tính chất góc chắn tiếp tuyến)
b) Mình hok hiểu đề:v
c) Vẽ hình mình ko thấy APBD nội tiếp:v
Nếu x = 1
Ta có 2x + 5 = 7 và x + 2 = 3
mà 7 không chia hết cho 3 => Đề vô lí
=> Bạn kiểm tra lại bài toán
=> Hoặc đề là: Tìm số nguyên x.
a) \(2x+5⋮x+2\)
\(2x+4+1⋮x+2\)
\(2\left(x+2\right)+1⋮x+2\)
Ta có : \(x+2⋮x+2\)
\(\Rightarrow2\left(x+2\right)⋮x+2\)
\(\Rightarrow1⋮x+2\)
\(\Rightarrow x+2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x=\left\{-3;-1\right\}\)
b) \(3x+5⋮x-2\)
\(3x-6+1⋮x-2\)
\(3\left(x-2\right)+1⋮x-2\)
Ta có : \(x-2⋮x-2\)
\(\Rightarrow3\left(x-2\right)⋮x-2\)
\(\Rightarrow1⋮x-2\)
\(\Rightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x=\left\{1;3\right\}\)