1. Một cano chạy xuôi dòng từ A đến B rồi chạy ngược dòng từ B đến A mất tất cả 4h . tính vận tốc của cano khi nước yên lặng, biết rằng quãng sông dài 30km và vận tốc dòng nước là 4km/h
giải giúp em bài toán với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=16 thì \(B=\dfrac{4+3}{4-3}=\dfrac{7}{1}=7\)
b: \(A=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}+6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}-3}\)
Bài 17:
a:
Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
=>O,B,A,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà OA\(\perp\)BC
nên OA//CD
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)AD tại E
Xét ΔABD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3),(4) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)
Bài 15:
a:
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
b:
Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF\(\perp\)AB tại F
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)
\(\widehat{EDH}=\widehat{ECH}\)(CEHD nội tiếp)
mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)
nên \(\widehat{FDH}=\widehat{EDH}\)
=>DA là phân giác của góc FDE
`69^2022`
`= (...9)^2022`
Có cùng chữ số tận cùng với `9^2022`
Ta có: `9^2022 = 9^(1011.2) = (9^2)^1011 = 81^1011` có tận cùng chữ số 1
Vậy ....
\(15^{15^{15^{15}}}\) có tận cùng là chữ số 5 do các chữ số tận cùng là 5 mũ bao nhiêu cũng tận cùng là 5 ngoại từ mũ 0
Để 4 n + 3 3 n + 1 3n+1 4n+3 thuộc Z thì 4n + 3 chia hết cho 3n + 1
⇒ 3 ( 4 n + 3 ) ⋮ 3 n + 1 ⇒3(4n+3)⋮3n+1 ⇒ 12 n + 9 ⋮ 3 n + 1
⇒12n+9⋮3n+1 ⇒ ( 12 n + 4 ) + 5 ⋮ 3 n + 1
⇒(12n+4)+5⋮3n+1
⇒ 4 ( 3 n + 1 ) + 5 ⋮ 3 n + 1
⇒4(3n+1)+5⋮3n+1
⇒ 5 ⋮ 3 n + 1 ⇒5⋮3n+1
⇒ 3 n + 1 ∈ { ± 1 ; ± 5 }
⇒3n+1∈{±1;±5} +) 3n + 1 = 1
⇒ n = 0
⇒n=0 ( chọn ) +) 3 n + 1 = − 1
⇒ n = − 2 3 3n+1=−1
⇒n= 3 −2 ( loại ) +) 3 n + 1 = 5
⇒ n = 4 3 3n+1=5
⇒n= 3 4 ( loại ) +) 3 n + 1 = − 5
⇒ n = − 2 3n+1=−5
⇒n=−2 Vậy n = 0 hoặc n = -2
A= 2n−1 6n−2 = 2n−1 3(2n−1)+1 =3+ 2n−1 1
⇒ 2 n − 1 ∈ Ư ( 1 ) = { ± 1 }
⇒2n−1∈Ư(1)={±1} 2n-1 1 -1 n 1 loại
Để phương trình là phương trình bậc hai thì \(\sqrt{m}>=0\)
=>m>=0
Để phương trình có hai nghiệm phân biệt thì \(\left[-2\left(\sqrt{m}+1\right)\right]^2-4\left(\sqrt{m}+1\right)>0\)
=>\(4\left(m+2\sqrt{m}+1\right)-4\left(\sqrt{m}+1\right)>0\)
=>\(4\left(m+\sqrt{m}\right)>0\)(luôn đúng khi m>=0)
Điều kiện: `m >= 0`
Phương trình đã cho có 2 nghiệm phân biệt
`<=> Δ' > 0`
`<=> (sqrt{m} + 1)^2 - (sqrt{m} + 1).1 > 0`
`<=> m^2 + 2sqrt{m} + 1 - sqrt{m} - 1 > 0`
`<=> m^2 + sqrt{m} >= 0` (Thỏa mãn với mọi `m >= 0)`
Olm chào em, em cần đăng đầy đủ nội dung câu hỏi đó lên trên n này thì thầy cô mới có thể giải thích cho em tại sao lại có dòng:
- 4 x 1 x 2 em nhé.
Gọi vận tốc của cano lúc nước yên lặng là x(km/h)
(Điều kiện: x>4)
vận tốc lúc xuôi dòng là x+4(km/h)
Vận tốc lúc ngược dòng là x-4(km/h)
Thời gian đi xuôi dòng là \(\dfrac{30}{x+4}\left(giờ\right)\)
Thời gian đi ngược dòng là \(\dfrac{30}{x-4}\left(giờ\right)\)
Tổng thời gian cả đi lẫn về là 4 giờ nên ta có:
\(\dfrac{30}{x+4}+\dfrac{30}{x-4}=4\)
=>\(\dfrac{30\left(x-4\right)+30\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=4\)
=>\(4\left(x^2-16\right)=60x\)
=>\(x^2-16=15x\)
=>\(x^2-15x-16=0\)
=>(x-16)(x+1)=0
=>\(\left[{}\begin{matrix}x-16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc của cano lúc nước yên lặng là 16km/h