K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

a, \(\sqrt{9x^2}-2x=\sqrt{3^2x^2}-2x=3x-2x=x\)

b, \(2\sqrt{x^2}=2x\)

12 tháng 9 2020

a) Vì \(x< 0\)\(\Rightarrow\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\)

b) Vì \(x>0\)\(\Rightarrow2\sqrt{x^2}=2.\left|x\right|=2x\)

12 tháng 9 2020

a, \(\sqrt{\left(x+2\right)^2}=2x+1\Leftrightarrow x+2=2x+1\Leftrightarrow-x=-1\Leftrightarrow x=1\)

b, \(\sqrt{4x^2-4x+1}=\sqrt{x^2-2x+1}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-1\right)^2}\Leftrightarrow2x-1=x-1\Leftrightarrow x=2\)

c, \(\sqrt{x^2-6x+9}=5\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\Leftrightarrow x=8\)

d, \(\sqrt{4x^2-12x+9}=\sqrt{9x^2-24x+16}\Leftrightarrow\sqrt{\left(2x-3\right)^2}=\sqrt{\left(3x-4\right)^2}\)

\(\Leftrightarrow2x-3=3x-4\Leftrightarrow-x=-1\Leftrightarrow x=1\)

12 tháng 9 2020

a) \(\sqrt{\left(x+2\right)^2}=2x+1\)

<=> \(\left|x+2\right|=2x+1\)

<=> \(\orbr{\begin{cases}x+2=2x+1\left(đk:x\ge-2\right)\\-x-2=2x+1\left(Đk:x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}-x=-1\\-3x=3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}\)

Vậy S = {1}

b) \(\sqrt{x^2-6x+9}=5\)

<=> \(\sqrt{\left(x-3\right)^2}=5\)

<=> \(\left|x-3\right|=5\)

<=> \(\orbr{\begin{cases}x-3=5\left(đk:x\ge3\right)\\3-x=5\left(đk:x< 3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=8\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)

Vậy S = {-2; 8}

c) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-2x+1}\)

<=> \(\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-1\right)^2}\)

<=> \(\left|2x-1\right|=\left|x-1\right|\)

<=> \(\orbr{\begin{cases}2x-1=x-1\\2x-1=1-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)

Vậy S = {0; 2/3}

d) \(\sqrt{4x^2-12x+9}=\sqrt{9x^2-24x+16}\)

<=> \(\sqrt{\left(2x-3\right)^2}=\sqrt{\left(3x-4\right)^2}\)

<=> \(\left|2x-3\right|=\left|3x-4\right|\)

<=> \(\orbr{\begin{cases}2x-3=3x-4\\2x-3=4-3x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=\frac{7}{5}\end{cases}}\)

Vậy S = {1; 7/5}

12 tháng 9 2020

\(A=x^4+x^3+1\) là số chính phương <=> \(k^2A,k\inℕ^∗\)cũng là số chính phương

Ở đây ta xét k=2\(\Rightarrow4A=4x^4+4x^3+4\)

Nếu \(x=1\Rightarrow4A=12\)không là số chinh phương

Xét \(2\le x\Rightarrow4\le x^2\Rightarrow4A\le4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Ý tưởng ở đây là chứng minh 4A nằm giữa 2 sô chính phương liên tiếp, từ đó ta ép 4A vào rất ít trường hợp khả thi

Vậy nên ta chứng minh \(4A>\left(2x^2+x-1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4>4x^4+x^2+1+4x^3-4x^2-2x\)

\(\Leftrightarrow3x^2+2x+3>0\)Đúng với mọi số tự nhiên x

Vậy \(\left(2x^2+x-1\right)^2< 4A\le\left(2x^2+x\right)^2\)

Lúc này 4A là số chính phương khi và chỉ khi \(4A=\left(2x^2+x\right)^2\Leftrightarrow x=2\)

14 tháng 9 2020

a) \(3x^2-7x+2=0\Leftrightarrow\left(3x^2-6x\right)-\left(x-2\right)=0\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)Vậy phương trình có 2 nghiệm \(\left\{\frac{1}{3};2\right\}\)

b) \(x^4-5x+4=0\Leftrightarrow\left(x^4-x\right)-4\left(x-1\right)=0\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^3+x^2+x-4=0\end{cases}}\)Xét phương trình: \(x^3+x^2+x-4=0\)

Đặt \(x=y-\frac{1}{3}\)thì phương trình trở thành \(y^3+\frac{18}{27}y-\frac{115}{27}=0\)có các hệ số \(a=\frac{18}{27},b=\frac{-115}{27}\)

\(\Rightarrow D=\left(\frac{b}{2}\right)^2+\left(\frac{a}{3}\right)^3=\left(\frac{\frac{-115}{27}}{2}\right)^2+\left(\frac{\frac{18}{27}}{3}\right)^3=\frac{491}{108}\)

\(\Rightarrow y=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}\)

\(\Rightarrow x=\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\)

Vậy phương trình có 2 nghiệm \(\left\{1;\sqrt[3]{\frac{115}{54}+\sqrt{\frac{491}{108}}}+\sqrt[3]{\frac{115}{54}-\sqrt{\frac{491}{108}}}-\frac{1}{3}\right\}\)

14 tháng 9 2020

c) \(\hept{\begin{cases}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-\frac{2\sqrt{5}}{5}y=\frac{7\sqrt{5}}{5}\left(1\right)\\x-\sqrt{5}y=2\sqrt{5}\left(2\right)\end{cases}}\)

Lấy (1) - (2), ta được: \(\frac{3\sqrt{5}}{5}y=-\frac{3\sqrt{5}}{5}\Leftrightarrow y=-1\). Từ đó tìm được \(x=\sqrt{5}\)

Vậy hệ có 1 nghiệm \(\left(x;y\right)=\left(\sqrt{5};-1\right)\)

9 tháng 9 2020

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

9 tháng 9 2020

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

9 tháng 9 2020

\(x\approx0,14779887;\frac{1}{2}\)

10 tháng 9 2020

Bài toán ghép cơ học không có gì mới

Ta chứng minh 2 bổ đề:

\(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\le\frac{9}{2\left(a+b+c\right)^2}\left(1\right)\)

\(\frac{9}{2\left(a+b+c\right)^2}\le\frac{1}{2\left(a^2+b^2+c^2\right)}+\frac{1}{ab+bc+ca}\left(2\right)\)

Bất đẳng thức ( 2 ) tương đương với:

\(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^2}{ab+bc+ca}\ge9\)

\(\Leftrightarrow\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}+1+\frac{2\left(a^2+b^2+c^2\right)}{ab+bc+ca}+4\ge9\)

\(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\ge2\)( Luôn đúng theo BĐT AM - GM )

 Bất đẳng thức ( 1 ) tương đương với:

\(\left(a+b+c\right)^2\left(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\right)\le\frac{9}{2}\)

Sử dụng Titu's Lemma ta dễ có:

\(\frac{\left(a+b+c\right)^2}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Một cách tương tự khi đó:

\(LHS\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\Sigma\left(\frac{b^2}{a^2+b^2}+\frac{a^2}{a^2+b^2}\right)=\frac{3}{2}+3=\frac{9}{2}\left(đpcm\right)\)

Vậy ta có đpcm

7 tháng 9 2020

\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )

Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )

Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :

\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )

Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d

Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td  ( \(k;t\in Z\))

\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )

Từ ( 1 ) và ( 4 ) => b2 = ktd2

\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> Đpcm

7 tháng 9 2020

Sửa lại một tí

Chỗ ( 2 ) chỉnh dấu lại :)

( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)

Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d

Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d

=> 1 chia hết cho d => d = 1

=> Đpcm

7 tháng 9 2020

x2+y2+z2=x2y2

x2+y2+z2=0<=>x2y2=0

<=> \(\orbr{\begin{cases}x^2=0\\y^2=0\end{cases}}\)

Vậy nghiệm của PT =0

    

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)