Bài 1:Tìm x
a)(x-1)^3+3(x-1)^2=(x^2-2x+4)(x+2).
b)(x^2+x)^2+(x^2+x)-6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I/ II,
1,community 1,A.An->The
2,culture 2,B.to communicate->communicating
3,northern 3,B.well->better
4,terrace 4,A.What->Which
5,B.collect->collecting
Áp dụng bđt cauchy dạng engel ta có:
\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+b^2+c^2+c^2+a^2+1+1+1}\)
\(=\frac{9}{2\left(a^2+b^2+c^2\right)+3}\le\frac{9}{2\left(ab+bc+ca\right)+3}=\frac{9}{2.3+3}=1\left(đpcm\right)\)
Dấu "=" xảy ra khi a=b=c
\(3\left(x-1\right)^2-3x\left(x-5\right)-2=0\)
\(3\left(x^2-2x+1\right)-3x^2+15x-2=0\)
\(3x^2-6x+3-3x^2+15x-2=0\)
\(9x+1=0\)
\(x=\frac{-1}{9}\)
\(3\left(x-1\right)^2-3x\left(x-5\right)-2=0\)
\(3.\left(x^2-2x+1\right)-3x\left(x-5\right)-2=0\)
\(3x^2-6x+3-3x^2+15x-2=0\)
\(9x=-1\)
\(x=\frac{-1}{9}\)
a)x^3 - 3x^2 + 4x - 12
= x^2(x - 3) + 4(x - 3)
= (x - 3)(x^2 + 4)
\(A=4x-x^2=4-\left(x^2-4x+4\right)=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)\(\Rightarrow4-\left(X-2\right)^2\le4\forall X\)\(\Rightarrow A\le4\)
\(A=4\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: maxA=4\(\Leftrightarrow x=2\)
a) \(A=x^2+x+1\)
\(A=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
c) \(C=x^2\left(2-x^2\right)\)
\(C=2x^2-x^4\)
\(C=-\left(x^4-2x^2\right)\)
\(C=-\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2-1\right]\)
\(C=-\left[\left(x^2-1\right)^2-1\right]\)
\(C=1-\left(x^2-1\right)^2\le1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2-1=0\Leftrightarrow x=\left\{\pm1\right\}\)