K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

lại nữa

1 tháng 6 2021

Từ giả thiết , ta có : \(GT< =>\frac{\left(3a+2b\right)\left(3a+2c\right)}{bc}=\frac{16}{bc}\)

\(< =>\left(\frac{3a}{b}+\frac{2b}{b}\right)\left(\frac{3a}{c}+\frac{2c}{c}\right)=16\)

\(< =>\left(3\frac{a}{b}+2\right)\left(3\frac{a}{c}+2\right)=16\)

đến đây nhắn cho e cái điểm rơi để e nghĩ tiếp nhaaaaaaa

em thi cấp 2:(((cẳng thẳng ko kém

31 tháng 5 2021

Không đăng lên đây chị nhé 

Chị trả lời câu hỏi của The Pie thôi nha

Mà chúc các anh chị thi tốt

31 tháng 5 2021

Bài 2 

a)

Giả sử \(a\le b\le c\)

Xét 3 trường hợp

TH1:Nếu a=2,b=3,c=5 thì \(a^2+b^2+c^2=38\)(không phải số nguyên tố)  (1)

TH2:Nếu a=3,b=5c=7 thì \(a^2+b^2+c^2=83\)  (t/m)                                   (2)

TH3:   a,b,c >3 => \(a,b,c⋮̸3\)

\(\Rightarrow a^2\equiv1\left(mod3\right)\)\(b^2\equiv1\left(mod3\right)\);  \(c^2\equiv1\left(mod3\right)\)

\(\Rightarrow a^2+b^2+c^2\equiv3\left(mod3\right)\)\(a^2+b^2+c^2⋮3\)

Từ (1),(2),(3) ta suy ra có 3 số duy nhất cần tìm là 3,5,7

Đáp án :

\(\infty\)

Bài toán này chúng tôi chịu ! Chắc là sai đề bài.

31 tháng 5 2021

8 896 : 635 + 1 023

\(\frac{8896}{635}\)+ 1 023

\(\frac{658501}{635}\)

17 tháng 12 2022

không mất tính tổng quát giả sử  $a\leqslant b\leqslant c$

đặt 

x=a+b+c

y=ab+bc+ac

z=abc

ta có bđt thức đầu tiên sẽ tương đương với 

$(x+3a)(x+3b)(x+3c)> 25(x-a)(x-b)(x-c)$

 

$\Leftrightarrow x^{3}+3x^{2}(a+b+c)+9x(ab+bc+ac)+27abc> 25(x^{3}-x^{2}(a+b+c)+x(ab+bc+ac)-abc)$

 

$\Leftrightarrow x^{3}-4xy+13z> 0$ (1)

đặt S=VT

ta có

S=$(a+b+c)^{3}-4(a+b+c)(ab+bc+ac)+13abc=(a+b+c)((a+b+c)^{2}-4(ab+bc+ac))+13abc=(a+b+c)((a+b-c)^{2}-4ab)+13abc= (a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)$

vậy (1) tương đương với

$(a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)> 0$

do $0< a\leqslant b\leqslant c$

nên bđt trên hiển nhiên đúng 

vậy được đpcm

29 tháng 5 2021

A B C O D E F H I

a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC

Vậy AD || BC (đpcm).

b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).

c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED

=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD

=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)

Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H

=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)

Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).

DD
27 tháng 5 2021

\(P=6x+10y+\frac{16}{x}+\frac{3}{y}\)

\(=9x+\frac{16}{x}+12y+\frac{3}{y}-\left(3x+2y\right)\)

\(\ge2\sqrt{9x.\frac{16}{x}}+2\sqrt{12y.\frac{3}{y}}-5\)

\(=31\)

Dấu \(=\)xảy ra khi \(x=\frac{4}{3},y=\frac{1}{2}\).

27 tháng 5 2021

\(\sqrt{x-3}\)\(\le\)\(\sqrt{6-x}\)

=> \(x-3\)\(\le\)\(6-x\)

<=> x+x \(\le\)6+3

<=> 2x\(\le\)9

=> \(x\le\frac{9}{2}\)

bạn kia giải thiếu điều kiện xác định rồi

\(ĐKXĐ:3\le x\le6\)

Ta có:\(pt\Leftrightarrow x-3\le6-x\Leftrightarrow2x\le9\Leftrightarrow x\le\frac{9}{2}\)

Kết hợp với điều kiện xác định \(\Rightarrow3\le x\le\frac{9}{2}\)

Vậy tập nghiệm của bất phương trình là:\(3\le x\le\frac{9}{2}\)

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.