cho ba điểm O,A,B thẳng hàng theo thứ tự đó. Trên đường trung trực của OA lấy điểm D sao cho DA=AB. Tia phân giác của góc DOA cắt BD tại E
a) Chứng minh OE=EB
b) Chứng minh E thuộc đường trung trực của DA
c) So sánh ED và EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=5x^3+6x^3+x^3-x^2+2x^3-4x^2=14x^3-5x^2\)
b, \(B=2a^2-b^2+3a^2-\left(5a^2-11ab+8b^2+2b^2+7a^2-5ab\right)\)
\(=5a^2-b^2-12a^2+16ab-10b^2=-7a^2-11b^2+16ab\)
\(x+5=0\Leftrightarrow x=-5\)
\(f\left(x\right)=\left(x^{2020}+5x^{2021}-2\right)^{2022}=\left(5^{2020}-5^{2022}-2\right)^{2022}\)
Đề sửa lại để số đẹp hơn:
\(f\left(x\right)=\left(x^{2022}+5x^{2021}-2\right)^{2020}=\left[\left(x+5\right).x^{2021}-2\right]^{2020}=\left(0.x^{2021}-2\right)^{2020}=2^{2020}\)
Cm : Xét t/giác ABE và t/giác AHE
có góc A1 = góc H1 = 900 (gt)
BE : chung
góc B1 = góc B2 (gt)
=> t/giác ABE = t/giác AHE (ch - gn)
=> AE = HE; AB = HB (các cặp cạnh tương ứng)
b) Ta có: góc A1 + góc A2 = 1800 (kề bù)
=> góc A2 = 1800 - góc A1 = 1800 - 900 = 900
=> góc A1 = góc H2 = 900
Xét t/giác AEK và t/giác HEC
có góc A2 = góc H2 = 900 (cmt)
AE = HE (cmt)
góc E1 = góc E2 (Đối đỉnh)
=> t/giác AEK = t/giác HEC (g.c.g)
=> AK = HC (hai cạnh tương ứng)
Mà AB + AK = BK
BH + HC = BC
Và AB = HB (cmt)
=> BK = BC
=> t/giác BKC là t/giác cân tại B
c) Áp dụng định lý Py - ta - go vào rồi lm
#zinc
a, Xét tam giác AIM và tam giác AIE có
^IAM = ^IAE ; AI _ chung ; AM = AE
Vậy tam giác AIM = tam giác AIE (c.g.c)
b, Xét tam giác AHI và tam giác AKI có
^HAI = ^KAI ; AI _ chung
Vậy tam giác AHI = tam giác AKI (ch-gn)
=> HI = KI ( 2 cạnh tương ứng )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có AH/AM = AK/AE => HK // ME ( Ta lét đảo )