\(\sqrt{8-2\sqrt{35}}\) giải giúp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi chiều dài thửa ruộng hình chữ nhật là x (m).
Do diện tích thửa ruộng là 100m2 nên chiều rộng của thửa ruộng hình chữ nhật là \(\frac{100}{x}\)( m )
Chiều dài lúc sau của thửa ruộng là x - 5 ( m )
Chiều rộng lúc sau của thửa ruộng là \(\frac{100}{x}+2\)( m )
Diện tích lúc sau của thửa ruộng là \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)\)( m2 )
Vì diện tích của thửa ruộng tăng thêm 5 m2 nên diện tích lúc sau của thửa ruộng là
100 + 5 = 105 ( m2 )
do đó ta có phương trình \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)=105\)( m2 )
\(\Leftrightarrow\left(x-5\right)\times\left(100+2x\right)=105x\)
\(\Leftrightarrow100x+2x^2-500-10x=105x\)
\(\Leftrightarrow2x^2-15x-500=0\)
\(\Leftrightarrow2x^2-40x+25x-500=0\)
\(\Leftrightarrow2x\times\left(x-20\right)+25\times\left(x-20\right)=0\)
\(\Leftrightarrow\left(x-20\right)\times\left(2x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\2x+25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=\frac{-25}{2}\left(ktm\right)\end{cases}}\)
Vậy chiều dài ban đầu của thửa ruộng là 20m, chiều rộng ban đầu của thửa ruộng là 5m.

\(a^2+bc\ge2a\sqrt{bc}\Leftrightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}=\frac{\sqrt{bc}}{2abc}\)
Tương tự ta cũng có: \(\frac{1}{b^2+ac}\le\frac{\sqrt{ac}}{2abc},\frac{1}{c^2+ab}\le\frac{\sqrt{ab}}{2abc}\).
Cộng lại vế theo vế ta được:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Ta lại có:
\(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}=\frac{1}{2}\left[\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right]\)
\(\ge0\)nên \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\).
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\).
Dấu \(=\)khi \(a=b=c>0\).


\(ax_1+bx_2+c=0\)
\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).
Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).
Thật vậy, ta có:
\(a^2c+ac^2+b^3-3abc=0\)
\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)
\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)
\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)
\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.
Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng.
Khi đó \(M=0+2018=2018\).

1. với a=2,5 thì √a2a2 =|a|=|a|=|2.5|=2.5|2.5|=2.5
với a=0,3 thì √a2a2 =|a|=|a|=|0,3|=0,3|0,3|=0,3
với a=-0,1 thì √a2a2 =|a|=|a|=|−0,1|=0,1

Hello em gái, làm quen vs anh nhá !
Dễ thấy: \(AB.AC=AO^2-R^2\) (phương tích của điểm A đối với (O))
\(\Leftrightarrow AB.AC=3R^2\)
Mà \(AB=BC=\frac{AC}{2}\Rightarrow AB.AC=2AB^2\)
\(\Rightarrow2AB^2=3R^2\Leftrightarrow\frac{AB^2}{R^2}=\frac{3}{2}\Leftrightarrow\frac{AB}{R}=\sqrt{\frac{3}{2}}\Leftrightarrow AB=R\sqrt{\frac{3}{2}}\)
\(\Rightarrow AB=5\sqrt{\frac{3}{2}}\)

\(\sqrt{x-1}\le x\)\(-1\)
\(\rightarrow x-1\le\left(x-1\right)^2\)\(\leftrightarrow x-1\le x^2-2x+1\)
\(\Rightarrow x^2-3x+2\ge0\)\(\Rightarrow\left(x-1\right)\left(x-2\right)\ge0\)'
TH1. \(\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}\leftrightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\rightarrow}x\ge2}\)
TH2 \(\hept{\begin{cases}x-1\le0\\x-2\le0\end{cases}\leftrightarrow\hept{\begin{cases}x\le1\\x\le2\end{cases}\Rightarrow}x\le1}\)
vậy: \(x\ge2;x\le1\)
~~~ Học Tốt ~~~
ĐKXD : \(x-1\ge0\rightarrow x\ge1\)
---> loại trường hợp 2....
vậy \(x\ge2\)
~Học tốt~

a) Do 1−√5<01−5<0 nên hàm số y=(1−√5)x−1y=(1−5)x−1 nghịch biến trên RR.
b) Khi x=1+√5x=1+5, ta có
y=(1−√5)(1+√5)−1=(1−5)−1=−5y=(1−5)(1+5)−1=(1−5)−1=−5.
c) Khi y=√5y=5, ta có
(1−√5)x−1=√5(1−5)x−1=5
⇔(1−√5)x=1+√5⇔(1−5)x=1+5
⇔x=1+√51−√5⇔x=1+51−5
⇔x=−3+√52⇔x=−3+52.
a, Vì \(1-\sqrt{5}< 0\)do \(1< \sqrt{5}\)
b, Thay \(x=1+\sqrt{5}\)vào hàm số trên ta được
\(\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1=y\)
\(\Leftrightarrow y=1-5-1=-5\)
Vậy với \(x=1+\sqrt{5}\)thì y = -5
c, Thay y = \(\sqrt{5}\)vào hàm số trên ta được
\(\sqrt{5}=\left(1-\sqrt{5}\right)x-1\)
\(\Leftrightarrow\sqrt{5}+1=\left(1-\sqrt{5}\right)x\Leftrightarrow x=\frac{\sqrt{5}+1}{1-\sqrt{5}}=-\frac{5+2\sqrt{5}+1}{4}\)
\(=-\frac{2\left(3+\sqrt{5}\right)}{4}=-\frac{3+\sqrt{5}}{2}\)
ko giải được đâu
bấm máy nó ra math errol mà bạn
\(8< 2\sqrt{35}\)
nên \(8-2\sqrt{35}\)là âm vậy ko có căn bên trong là số âm