hai đội công nhân cùng làm chung trong 6 giờ thì hoàn thành 11/15 công việc. Nếu đội thư snhaats làm riêng trong 5 giờ và đội thứ 2 làm riêng trong 6 giờ thì hoàn thành 2/3 công việc. Hỏi nếu làm iêng, mỗi đội hoàn thành công việc trong thơi gian là bao lâu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b: Phương trình hoành độ giao điểm là:
\(x^2=x+2\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Khi x=2 thì \(y=2^2=4\)
Khi x=-1 thì \(y=\left(-1\right)^2=1\)
Vậy: A(-1;1); B(2;4)
C thuộc (P)
=>\(C\left(x;x^2\right)\)
B(2;4); A(-1;1); C(x;x2)
\(\overrightarrow{BA}=\left(-3;-3\right);\overrightarrow{BC}=\left(x-2;x^2-4\right)\)
ΔBAC vuông tại B
=>\(\overrightarrow{BA}\cdot\overrightarrow{BC}=0\)
=>\(-3\left(x-2\right)+\left(-3\right)\left(x^2-4\right)=0\)
=>\(\left(x-2\right)+\left(x^2-4\right)=0\)
=>\(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)
Khi x=-3 thì \(y=\left(-3\right)^2=9\)
vậy: C(-3;9); A(-1;1); B(2;4)
\(BA=\sqrt{\left(-1-2\right)^2+\left(1-4\right)^2}=3\sqrt{2}\)
\(BC=\sqrt{\left(-3-2\right)^2+\left(9-4\right)^2}=5\sqrt{2}\)
\(AC=\sqrt{\left(-3+1\right)^2+\left(9-1\right)^2}=2\sqrt{17}\)
Khoảng cách từ B đến AC là:
\(\dfrac{BA\cdot BC}{AC}=\dfrac{3\sqrt{2}\cdot5\sqrt{2}}{2\sqrt{17}}=\dfrac{15}{\sqrt{17}}\)

1: Xét tứ giác BMNC có \(\widehat{BMC}=\widehat{BNC}=90^0\)
nên BMNC là tứ giác nội tiếp
=>B,M,N,C cùng thuộc một đường tròn
2: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{ANM}\left(=180^0-\widehat{MNC}\right)\)
nên \(\widehat{xAC}=\widehat{ANM}\)
=>MN//Ax
mà Ax\(\perp\)AO
nên MN\(\perp\)AO
mà MN\(\perp\)NK
nên NK//AO
1: Xét tứ giác BMNC có 𝐵𝑀𝐶^=𝐵𝑁𝐶^=900BMC=BNC=900
nên BMNC là tứ giác nội tiếp
=>B,M,N,C cùng thuộc một đường tròn
2: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
𝑥𝐴𝐶^xAC là góc tạo bởi tiếp tuyến Ax và dây cung AC
𝐴𝐵𝐶^ABC là góc nội tiếp chắn cung AC
Do đó: 𝑥𝐴𝐶^=𝐴𝐵𝐶^xAC=ABC
mà 𝐴𝐵𝐶^=𝐴𝑁𝑀^(=1800−𝑀𝑁𝐶^)ABC=ANM(=1800−MNC)
nên 𝑥𝐴𝐶^=𝐴𝑁𝑀^xAC=ANM
=>MN//Ax
mà Ax⊥⊥AO
nên MN⊥⊥AO
mà MN⊥⊥NK
nên NK//AO

a: Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{ABD}=\widehat{BED}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD~ΔAEB
=>\(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)
=>\(AB^2=AD\cdot AE\)
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\)
=>\(AH\cdot AO=AD\cdot AE\)
=>\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)
Xét ΔAHD và ΔAEO có
\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)
\(\widehat{HAD}\) chung
Do đó: ΔAHD~ΔAEO
=>\(\widehat{AHD}=\widehat{AEO}\)
mà \(\widehat{AHD}+\widehat{OHD}=180^0\)(hai góc kề bù)
nên \(\widehat{OHD}+\widehat{OED}=180^0\)
=>OHDE nội tiếp

a: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)
nên BNMC là tứ giác nội tiếp
b: Ta có: BNMC là tứ giác nội tiếp
=>\(\widehat{BCM}+\widehat{BNM}=180^0\)
mà \(\widehat{BNM}+\widehat{INB}=180^0\)(hai góc kề bù)
nên \(\widehat{INB}=\widehat{ICM}\)
Ta có: A,D,B,C cùng thuộc (O)
=>ADBC là tứ giác nội tiếp
=>\(\widehat{ADB}+\widehat{ACB}=180^0\)
mà \(\widehat{ADB}+\widehat{IDB}=180^0\)
nên \(\widehat{IDB}=\widehat{ACB}\)
Xét ΔINB và ΔICM có
\(\widehat{INB}=\widehat{ICM}\)
\(\widehat{NIB}\) chung
Do đó: ΔINB~ΔICM
=>\(\dfrac{IN}{IC}=\dfrac{IB}{IM}\)
=>\(IN\cdot IM=IB\cdot IC\left(1\right)\)
Xét ΔIDB và ΔICA có
\(\widehat{IDB}=\widehat{ICA}\)
\(\widehat{DIB}\) chung
Do đó: ΔIDB~ΔICA
=>\(\dfrac{ID}{IC}=\dfrac{IB}{IA}\)
=>\(IB\cdot IC=IA\cdot ID\left(2\right)\)
Từ (1),(2) suy ra \(ID\cdot IA=IN\cdot IM\)
=>\(\dfrac{ID}{IM}=\dfrac{IN}{IA}\)
Xét ΔIDN và ΔIMA có
\(\dfrac{ID}{IM}=\dfrac{IN}{IA}\)
\(\widehat{DIN}\) chung
Do đó: ΔIDN~ΔIMA

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}+2+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(P=A\cdot B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{x-2\sqrt{x}}{\sqrt{x}+2}\)
\(=\dfrac{x}{\sqrt{x}+2}\)
P<1
=>P-1<0
=>\(\dfrac{x-\sqrt{x}-2}{\sqrt{x}+2}< 0\)
=>\(x-\sqrt{x}-2< 0\)
=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4

b: \(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)
\(=4m^2-4m+8=\left(2m-1\right)^2+7>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)
Đặt \(A=\dfrac{4m^2-8m+7}{6x_1x_2-x_1^2-x_2^2+11}\)
\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left(x_1^2+x_2^2\right)+11}\)
\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+11}\)
\(=\dfrac{4m^2-8m+7}{-\left(x_1+x_2\right)^2+8x_1x_2+11}\)
\(=\dfrac{4m^2-8m+7}{-\left(2m\right)^2+8\left(m-2\right)+11}\)
\(=\dfrac{4m^2-8m+7}{-4m^2+8m-16+11}\)
\(=\dfrac{4m^2-8m+7}{-4m^2+8m-5}\)
\(=-\dfrac{4m^2-8m+7}{4m^2-8m+5}\)
\(=-\dfrac{4m^2-8m+5+2}{4m^2-8m+5}\)
\(=-1-\dfrac{2}{4m^2-8m+5}\)
\(=-1-\dfrac{2}{4m^2-8m+4+1}\)
\(=-1-\dfrac{2}{\left(2m-2\right)^2+1}\)
\(\left(2m-2\right)^2+1>=1\forall m\)
=>\(\dfrac{2}{\left(2m-2\right)^2+1}< =\dfrac{2}{1}=2\forall m\)
=>\(-\dfrac{2}{\left(2m-2\right)^2+1}>=-2\forall m\)
=>\(A=-\dfrac{2}{\left(2m-2\right)^2+1}-1>=-3\forall m\)
Dấu '=' xảy ra khi 2m-2=0
=>m=1

a: \(1+2\sqrt{x}+x=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1^2=\left(\sqrt{x}+1\right)^2\)
b: \(a+2\sqrt{a}+1=\left(\sqrt{a}\right)^2+2\cdot\sqrt{a}\cdot1+1^2=\left(\sqrt{a}+1\right)^2\)
d: \(x-2\sqrt{xy}+y=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\sqrt{y}+\left(\sqrt{y}\right)^2\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)
e: \(x^2-1=x^2-1^2=\left(x-1\right)\left(x+1\right)\)
f: \(9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\)
g: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
h: \(1-x\sqrt{x}=1^3-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
i: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
j: \(a\sqrt{a}-1=\left(\sqrt{a}\right)^3-1^3=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)
k: \(x\sqrt{x}-8=\left(\sqrt{x}\right)^3-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)
l: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

Lời giải:
1.
Khi $m=2$ thì PT trở thành:
$x^2-2x-8=0$
$\Leftrightarrow (x+2)(x-4)=0$
$\Leftrightarrow x+2=0$ hoặc $x-4=0$
$\Leftrightarrow x=-2$ hoặc $x=4$
2.
Để pt có 2 nghiệm $x_1,x_2$ phân biệt thì:
$\Delta'=(m-1)^2+m^2+4>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-m^2-4$
Ta thấy: Do $x_1x_2=-m^2-4<0$ với mọi $m$
$\Rightarrow x_1,x_2$ trái dấu. Mà $x_1< x_2$ nên: $x_1< 0; x_2>0$
Khi đó:
$|x_1|-|x_2|=2|x_1x_2|-6$
$\Leftrightarrow -x_1-x_2 = -2x_1x_2-6$
$\Leftrightarrow -(x_1+x_2)+2x_1x_2+6=0$
$\Leftrightarrow -2(m-1)+2(-m^2-4)+6=0$
$\Leftrightarrow 2m^2+2m=0$
$\Leftrightarrow m(m+1)=0\Leftrightarrow m=0$ hoặc $m=-1$

M (-1;3). để (d) đi qua M thì: 3=-2+b
Vậy: b=5 thì (d) đi qua M
Lời giải:
Giả sử đội 1 và đội 2 làm riêng trong lần lượt $a$ và $b$ giờ thì hoàn thành công việc.
Trong 1 giờ: đội 1 làm được $\frac{1}{a}$ công việc, đội 2 làm được $\frac{1}{b}$ công việc.
Theo bài ra ta có:
\(\left\{\begin{matrix}\ \frac{6}{a}+\frac{6}{b}=\frac{11}{15}\\ \frac{5}{a}+\frac{6}{b}=\frac{2}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{15}\\ \frac{1}{b}=\frac{1}{18}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=15\\ b=18\end{matrix}\right.\)