Cho đường tròn (O;15 cm), dây AB=24cm. Một tiếp tuyến song song với AB cắt các tia OA, OB theo thứ tự ở E, F. Tính độ dài EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Gọi H là giao điểm của OA và CD
Vì CD là đường trung trực của OA nên:
CD ⊥ OA và HA = HO
Mà CD ⊥ OA nên HC = HD (đường kính dây cung)
Vì tứ giác ACOD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.
Đồng thời CD ⊥ OA nên ACOD là hình thoi.
b) Vì ACOD là hình thoi nên AC = OC
Mà OC = OA ( = R) nên tam giác OAC đều
Suy ra: ^COA=60∘COA^=60∘ hay ˆCOI=60∘
Mà CI ⊥ OC (tính chất tiếp tuyến)
Trong tam giác vuông OCI, ta có:
CI=OC.tgˆCOI=R.tg60∘=R√3CI=OC.tgCOI^=R.tg60∘=R3.

\(\hept{\begin{cases}\left(x+\sqrt{x^2+2021}\right)\left(y+\sqrt{y^2+2021}\right)\left(x-\sqrt{x^2+2021}\right)=\left(x-\sqrt{x^2+2021}\right)2021\\\left(x+\sqrt{x^2+2021}\right)\left(y+\sqrt{y^2+2021}\right)\left(y-\sqrt{y^2+2021}\right)=\left(y-\sqrt{y^2+2021}\right)2021\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-2021\left(y+\sqrt{y^2+2021}\right)=\left(x-\sqrt{x^2+2021}\right)2021\\-2021\left(x+\sqrt{x^2+2021}\right)=\left(y-\sqrt{y^2+2021}\right)2021\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y+\sqrt{y^2+2021}=\sqrt{x^2+2021}-x\\x+\sqrt{x^2+2021}=\sqrt{y^2+2021}-y\end{cases}}\)
\(\Rightarrow y+\sqrt{y^2+2021}+x+\sqrt{x^2+2021}=\sqrt{x^2+2021}-x+\sqrt{y^2+2021}-y\)
\(\Rightarrow x+y=0\)

a, Với a ; b > 0
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
b, Với x ; y > 0 ; \(x\ne y\)
\(B=\left(\frac{x\sqrt{x}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}+\sqrt{xy}\right):\left(x-y\right)-\frac{2\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\left(\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\sqrt{xy}\right):\left(x-y\right)-\frac{2\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{2\sqrt{xy}}{x-y}-\frac{2\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{2\sqrt{xy}-2\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{x-y}=\frac{-2y}{x-y}\)

a, Với \(x\ge0;x\ne2\)
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)
\(=\frac{3x+3\sqrt{x}-3-\left(x-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x+3\sqrt{x}-3-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-1}\)
b, \(\frac{\sqrt{x}-3}{\sqrt{x}-1}=\frac{\sqrt{x}-1-2}{\sqrt{x}-1}=1-\frac{2}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4 | 0 | 9 | loại |