tim x, y thuoc Q: (2x-7)^2018+(3y+8)^2020<=8
cho a/7=b/8=c/9=10. tinh P=6a+3b-7c/8a+9b-10c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ba số x , y , z thỏa mãn xyz = 2017
Tính tổng D = 2017x / xy + 2017x + 2017+ y/yz+y+2017+z/zx+z+1
thay xyz=2017, ta có:
\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{Bài làm }\)
\(\text{ Gọi xyz = 2017}\)
\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{# Chúc bạn học tốt #}\)
Không chắc nữa chắc sai -.-
a) \(A=\frac{3}{2}\left(-x^2y^3\right)^2\left(-x\right)^2\)
\(=\frac{3}{2}.[\left(-x\right)^{2^2}.\left(-x\right)^2].y^{3^2}\)
\(=\frac{3}{2}.\left[\left(-x\right)^4.\left(-x^2\right)\right].y^6\)
\(=\frac{3}{2}.x^6.y^6\)
b) A.B
\(\)\((\frac{3}{2}.x^6.y^6).x^6y^6\)
\(=\frac{3}{2}.\left(x^6.x^6\right).\left(y^6.y^6\right)\)
\(=\frac{3}{2}.x^{12}.y^{12}\)
A + B
\((\frac{3}{2}.x^6.y^6)+\left(x^6y^6\right)\)
\(=\frac{3}{2}.\left(x^6.x^6\right)+\left(y^6.y^6\right)\)
\(=\frac{3}{2}.x^{12}+y^{12}\)
2) P-Q
\(\left(4x^2-5xy+3x-4\right)-(y^2+4+5xy-2y+x)\)
\(=4x^2-5xy-3x-4-y^2+4x^2+5xy-2y+x\)
\(=\left(4x^2-4x^2\right)+\left(5xy-5xy\right)+\left(3x-x\right)+4-y\)
\(=2x+4-y\)
b) Không biết làm :v
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
B D C E
Xét \(\Delta BDC\)có:
\(\widehat{DBC}+\widehat{DCB}+\widehat{CDB}=180^0\)
\(\Rightarrow\widehat{DCB}=\widehat{CDB}=45^0\)
\(\Rightarrow\widehat{BDE}=135^0\)(kề bù)
Xét \(\Delta BDE\)có:
\(\widehat{BDE}+\widehat{BED}+\widehat{DBE}=180^0\)
\(\Rightarrow135^0+2\cdot\widehat{DBE}=180^0\)(vì \(\Delta BDE\)cân tại B)
\(\Rightarrow\widehat{DBE}=22,5^0\)
B D C E
Trong tam giác BDC có: \(\widehat{BDC}+\widehat{DCB}+\widehat{CBD}=180^o\)
Thay \(\widehat{BDC}+\widehat{DCB}+90^o=180^o\)
\(\Rightarrow\widehat{BDC}+\widehat{DCB}=90^o\)
Mà \(\widehat{BDC}=\widehat{DCB}\)(Tam giác BDC vuông cân tại B)
Nên \(\widehat{BDC}=\widehat{DCB}=\frac{90^o}{2}=45^o\)
Ta có: \(\widehat{BDC}+\widehat{BDE}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{BDE}=180^o-\widehat{BDC}=180^o-45^o=135^o\)
Vì DE = DB (gt) nên tam giác BDE cân tại D
\(\Rightarrow\widehat{BED}=\widehat{EBD}\)
Trong tam giác BDE có: \(\widehat{BDE}+\widehat{BED}+\widehat{EBD}=180^o\)
Thay \(135^o+\widehat{BED}+\widehat{EBD}=180^o\)
\(\Rightarrow\widehat{BED}+\widehat{EBD}=45^o\)
\(\Rightarrow\widehat{DBE}+\widehat{DBE}=45^o\)\(\left(\widehat{BED}=\widehat{BDE}\right)\)
\(\Rightarrow2\widehat{DBE}=45^o\)
\(\Rightarrow\widehat{DBE}=22,5^o\)
tu ve hinh :
a, tamgiac ADE can tai A (gt)
=> AD = AE va goc ADE = goc AED (dn)
xet tamgiac ADB va tamgiac AEC co : DB = CE (gt)
=> tamgiac ADB = tamgiac AEC (c - g - c)
=> AB = AC (dn)
=> tamgiac ABC can tai A (dn)
b, xet tamgiac DMB va tamgiac ENC co :
goc DMB = goc ENC = 90o do MB | AD va CN | AE (gt)
goc ADE = goc AED (cau a)
DB = CE (gt)
=> tamgiac DMB = tamgiac ENC (ch - gn)
=> BM = CN (dn)
Ví dụ:
Khi giữ nguyện:
\(\frac{x_1+x_2+x_3+....+x_n}{n}=Z\)
Khi tăng thêm:
\(\frac{x_1+20+x_2+20+x_3+20+.......+x_n+20}{n}\)\(=\frac{\left(x_1+x_2+x_3+.....+x_n\right)+20n}{n}=Z+20\)
Chúc bạn học tốt!