CMR: a3_ 13a chia hết cho 6 vs a thuộc z và a lớn hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)

\(\left|x-2018\right|+x=2018\)
\(\Rightarrow\left|x+2018\right|=2018-x\)
\(\Rightarrow x+2018\le0\)
\(\Rightarrow x\le-2018\)
Vậy \(x\in R;x\le-2018\)
\(\left|x-2018\right|+x=2018\)
\(\Rightarrow\left|x-2018\right|=2018-x\)
\(\Rightarrow x\le2018\)
Vậy ..........

Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow VT\ge2+0+5=7=VP\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)


tu ve hinh :
tamgiac ABC co AB = AC (1)
=> tamgiac ABC can tai A (dh)
=> goc ABC = goc ACB (tc) (2)
xet tamgiac ABM va tamgiac ACM co : BM = CM do M la trung diem cua BC (gt) ket hop voi (1)(2)
=> tamgiac ABM = tamgiac ACM (c - g - c)
=> goc BAM = goc CAM (dn) ma AM nam giua AB va AC
=> AM la tia phan giac cua goc BAC (dn)
kl_
Xét \(\Delta\)ABM và \(\Delta\)ACM có :
- AB = AC ( gt )
- Góc B = góc C ( vì \(\Delta\)ABC cân )
- BM = CM ( vì M là trung điểm BC )
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )
\(\Rightarrow\)BÂM = CÂM ( hai góc tương ứng )
\(\Rightarrow\)AM là phân giác của BÂC

tu ve hinh :
tamgiac ABC co :
AB = 7,2 => AB2 = 7,22 = 51,84
BC = 12 => BC2 = 122 = 144
AC = 9,6 => AC2 = 9,62 = 92,16
=> AB2 + AC2 = 51,84 + 92,16 = 144 = BC2
=> tamgiac ABC vuong tai A (dinh ly Py-ta-go dao)

Sửa lại đề: BC = 17
Vì \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2=17^2=289\)
Từ \(\frac{AB}{AC}=\frac{8}{15}\)\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)
\(\Rightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC^2}{15}\right)=\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{289}{289}=1\)
\(\Rightarrow AB^2=1.8^2=64\)\(\Rightarrow AB=\pm8\)
\(AC^2=1.15^2=225\)\(\Rightarrow AC=\pm15\)
mà AB, AC >0
\(\Rightarrow AB=8\)VÀ \(AC=15\)

tu ve hinh :
a, xet tamgiac MBK va tamgiac MCH co :
goc BKM = goc CHM = 90o do MK | AB va MH | AC
tamgiac ABC can tai A (gt) => goc ABC = goc ACB (tc)
MB = MC do M la trung diem cua BC (gt)
=> tamgiac MBK = tamgiac MCH (ch - gn)
TA CÓ:\(a^3-13a=a\left(a^2-13\right)\)
\(=a\left(a^2-1-12\right)\)
\(=a\left(a-1\right)\left(a+1\right)-12a\)
Ta có:a(a-1)(a+1)là tích ba stn liên tiếp nên tồn tại ít nhất một bội số của 2 =>a(a-1)(a+1)chia hết cho 2
tồn tại một bội số của 3 nên a(a-1)(a+1) chia hết cho 3=>a(a-1)(a+1)chia hết cho 6
mà 12a chia hết cho 6
\(\Rightarrow a^3-13a⋮6\)
Đặt nhân tử chung a ra rồi tách -13 thành -1-12 đó bạn!
Chúc bạn hok tốt