Tìm giá trị nhỏ nhất của các biểu thức b=( x^4+5)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:
OC = OA ( gt)
^BOC = ^DOA
OB = OD
=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)
b) Có: OB = OD ; OA = OC ( gt)
=> OB - OA = OD - OC
=> AB = CD ( 2)
Từ (1) => ^OBC = ^ODA => ^ABK = ^CDK ( 3)
Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)
Từ (2) ; (3) ; (4) => \(\Delta\)AKB = \(\Delta\)CKD => AK = CK
Xét \(\Delta\)OAK và \(\Delta\)OCK có:
OA = OC
^OAK = ^OCK
AK = CK
=> \(\Delta\)OAK = \(\Delta\)OCK
=> ^AOK = ^COK
=> OK là phân giác của ^xOy.

\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)


Theo đề bài : số lít dầu hỏa và cân nặng của dầu hỏa là ai đại lượng tỉ lệ thuận.
Gọi x là số lít dầu hỏa có từ 19 kg dầu hỏa.
\(\frac{21}{16,8}=\frac{x}{19}\Rightarrow x=\frac{21.19}{16,8}=23,75\)
Mà 23,75 > 23. Do đó 19 kg dầu hỏa không thể hết vào can 23 l.
#Panda
Trl :
Coi x là số lít dầu hỏa từ 19kg dầu hỏa .
Cùng một loại dầu , khối lượng tỉ lệ thuận với thể tích , nếu thể tích của 19 kg dầu hỏa là x thì :
\(\frac{16,8}{21}\)\(=\frac{19}{x}\)
\(\Rightarrow x=\frac{19.21}{16,8}=23,75\)
Mà : 23,75 > 23
Do đó : 19kg dầu hỏa không thể chứa được hết vào can 23l

A B C E M
a) Xét t/giác AMB và t/giác EMC
có MA = ME (gt)
BM = MC (gt)
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
=> t/giác AMB = t/giác EMC (c.g.c)
b) Do t/giác AMB = t/giác EMC (cmt)
=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CE
=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)
mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE
c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến
=> AM = BM = MC = 1/2BC
=> BC = 2AM
HD C2: CM t/giác ABC = t/giác CEA (C.g.c)
=> BC = EA (2 cạnh t/ứng
=> 1/2BC = 1/2EM
=> 1/2BC = MA (vì EM = MA = 1/2EM)
=> AM = 2BC
ta có: x4 > 0
=> x4 + 5 > 5
=> (x4 + 5)2 > 25
=> b > 25
Dấu = xảy ra <=> x=0
Vậy GTNN của b = 25 <=> x=0
\(B=\left(x^4+5\right)^2\)
Ta có \(x^4\ge0\) \(\forall x\)
=> \(x^4+5\ge5\) \(\forall x\)
=> \(\left(x^4+5\right)^2\ge5^2=25\)
\(MinB=25\Leftrightarrow x^4+5=5\)\(\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy \(MinB=25\) tại \(x=0\)