Cho phân số \(N=\frac{35n+2020}{70}\left(n\in Z\right)\). N được viết dưới dạng số thập phân gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Ta có: \(\left|x-\frac{1}{3}\right|+2x=2\)
\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2-2x\)
Đến đây ta xét điều kiện: \(x\le1\)
PT\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2-2x\\x-\frac{1}{3}=2x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=\frac{7}{3}\\x=\frac{5}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{9}\\x=\frac{5}{3}\end{cases}\left(tm\right)}}\)
Vậy \(x=\frac{7}{9}\)hoặc \(x=\frac{5}{3}\)


\(9x^2yz\cdot\left(-3xy^4\right)=\left(-3\cdot9\right)\left(x^2x\right)\left(yy^4\right)z=-27x^3y^5z\)
\(5a^2b+6a^3b^2-12a^2b+4a^3b^2=\left(5-12\right)a^2b+\left(6+4\right)a^3b^2=-7a^2b+10a^3b^2\)