K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)

Áp dụng BĐT AM-GM ta có:

\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)

Suy ra BĐT đã cho là đúng nếu ta chứng minh được

\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)

Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)

Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

27 tháng 9 2020

Bài 3:

Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)

Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)

Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:

\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)

Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề

Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị

Tìm x                                                                                                                                                                                                                                                                                                                   9x+1=272               ...
Đọc tiếp

Tìm x                                                                                                                                                                                                                                                                                                                   9x+1=272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Cần gấp!Ai nhanh và đúng mình sẽ tick nhé! (Có cách giải nha)

5
27 tháng 9 2020

\(9^{x+1}=27^2\)

\(\left(3^2\right)^{x+1}=\left(3^3\right)^2\)

\(3^{2\left(x+1\right)}=3^6\)

\(\Rightarrow2\left(x+1\right)=6\Rightarrow x+1=6:2\Rightarrow x+1=3\Rightarrow x=3-1\Rightarrow x=2\)

27 tháng 9 2020

      Bài làm :

Ta có :

\(9^{x+1}=27^2\)

\(\Leftrightarrow\left(3^2\right)^{x+1}=\left(3^3\right)^2\)

\(\Leftrightarrow3^{2.\left(x+1\right)}=3^6\)

\(\Leftrightarrow2\left(x+1\right)=6\)

\(\Leftrightarrow x+1=3\)

\(\Leftrightarrow x=2\)

Vậy x=2

27 tháng 9 2020

( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )

= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x

= 0 ( đpcm )

27 tháng 9 2020

Nếu x=0 thì y2= 49 => y=7

Nếu x khác 0 thì 10x+48 có chữ số tận cùng là 8(vô lí)

Vậy x=0, y=7

27 tháng 9 2020

\(pt\Leftrightarrow x^2-6+\sqrt{x^2-6}-6=0\)

\(\Leftrightarrow\left(\sqrt{x^2-6}\right)^2+3\sqrt{x^2-6}-2\sqrt{x^2-6}-6=0\)

\(\Leftrightarrow\left(\sqrt{x^2-6}+3\right)\left(\sqrt{x^2-6}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-6}=-3\left(L\right)\\\sqrt{x^2-6}=2\end{cases}}\)

\(\Rightarrow x^2-6=4\Rightarrow x^2=10\)

\(\Rightarrow x=\sqrt{10}\)

27 tháng 9 2020

\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\text{[}\left(x+y\right)\left(x+4y\right)\text{]}\text{[}\left(x+2y\right)\left(x+3y\right)\text{]}+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\text{[}\left(x^2+5xy\right)+4y^2\text{]}\text{[}\left(x^2+5xy\right)+6y^2\text{]}+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+25y^4=\left(x^2+5xy+5y^2\right)\)

Vậy đề bài là số chính phương.