K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

a) \(\sqrt{x^2}=7\)

\(\Leftrightarrow\left|x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

b) \(\sqrt{\left(x-2020\right)^2}=10\)

\(\Leftrightarrow\left|x-2020\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)

28 tháng 9 2020

c) đk: \(x\ge2\)

 \(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)

\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)

\(\Leftrightarrow12\sqrt{x-2}=x+4\)

\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow x^2-136x+304=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)

d) đk: \(x\ge-1\)

 \(\sqrt{25x+25}-2\sqrt{64x+64}=7\)

\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)

\(\Leftrightarrow-11\sqrt{x+1}=7\)

Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)

=> pt vô nghiệm

28 tháng 9 2020

a) Trên AB lấy điểm J sao cho MJ // CD

∆BCD có M là trung điểm của BC và MJ // CD nên J là trung điểm của BD => BJ = DJ       (1)

∆AJM có I là trung điểm của AM và ID // MJ nên D là trung điểm AJ => AD = DJ                 (2)

Từ (1) và (2) suy ra AD = DJ = JB => AD/AB = 1/3

b) ∆AMC và ∆AMB có cùng chiều cao hạ từ A và hai cạnh đáy của hai tam giác này bằng nhau (MB = MC) nên SAMC = SAMB = SABC/2 = 24 (cm2)

∆AIC và ∆CIM có cùng chiều cao hạ từ C và hai cạnh đáy của hai tam giác bằng nhau (AI = IM) nên SAIC = SCIM = SAMC/2 = 12 (cm2)

Ta có: DI = 1/2JM = 1/2.1/2CD = 1/4CD => DI = 1/3IC => SADI = 1/3SAIC = 4 (cm2)

Vậy diện tích tam giác ADI là 4cm2

Bài 1: Phân tích a) 2x3 - x2 - 2x + 4                                                                                         c) x3 - 16x - 15x (x - 4)b) 4x2 - 16x2y2 + y2 + 4xy                                                                              d) x (x - y) + y(x - y)2 - xy + x2Bài 2 : Phân tích a) x4 + 1 - 2x2                                                   ...
Đọc tiếp

Bài 1: Phân tích 

a) 2x3 - x2 - 2x + 4                                                                                         c) x3 - 16x - 15x (x - 4)

b) 4x2 - 16x2y2 + y2 + 4xy                                                                              d) x (x - y) + y(x - y)2 - xy + x2

Bài 2 : Phân tích 

a) x4 + 1 - 2x2                                                                                                c) y2 - 4x2 + 4x + 1 

b) x2 - y2 - 3y + 3x                                                                                          d) x3 (2 + 1)2 - (x + 2)2 + 1 - x3

Bài 3 : Phân tích 

a) x2 - 8x + 7                                                                                                  c) x4 + 64

b) 2x2 - 5x + 2                                                                                                 d) (8 - 2x2)2 - 18x (x + 2) ( x - 2) 

Bài 4: Chia

a) (x3 - 3x - 2) : (x - 2) 

b) (x3 + 6x2 + 8x - 3) : (x2 + 3x + 1) 

c) (2x4 - 7x3 + 9x2 - 7x + 2) : (2x2 - 5x + 2)

 

5
28 tháng 9 2020

Bài 1:

a) \(2x^3-x^2-2x+1\) (đã sửa đề)

\(=x^2\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(x^2-1\right)\left(2x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)

b) \(4x^2-16x^2y^2+y^2+4xy\)

\(=\left(4x^2+4xy+y^2\right)-16x^2y^2\)

\(=\left(2x+y\right)^2-\left(4xy\right)^2\)

\(=\left(2x-4xy+y\right)\left(2x+4xy+y\right)\)

c) \(x^3-16x-15x\left(x-4\right)\)

\(=x^3-16x-15x^2+60x\)

\(=x^3-15x^2+44x\)

\(=x\left(x^2-15x+44\right)\)

\(=x\left(x-4\right)\left(x-11\right)\)

d) \(x\left(x-y\right)+y\left(x-y\right)^2-xy+x^2\)

\(=x\left(x-y\right)+y\left(x-y\right)^2+x\left(x-y\right)\)

\(=\left(x-y\right)\left[x+y\left(x-y\right)+x\right]\)

\(=\left(x-y\right)\left(2x+xy-y^2\right)\)

28 tháng 9 2020

Bài 2:

a) \(x^4+1-2x^2\)

\(=\left(x^2\right)^2-2x^2+1\)

\(=\left(x^2-1\right)^2\)

\(=\left(x-1\right)^2\left(x+1\right)^2\)

b) \(x^2-y^2-3y+3x\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

c) \(y^2-4x^2+4x-1\) (đã sửa đề)

\(=y^2-\left(2x-1\right)^2\)

\(=\left(y-2x+1\right)\left(y+2x-1\right)\)

d) \(x^3\left(2+1\right)^2-\left(x+2\right)^2+1-x^3\)

\(=9x^3-x^2-4x-4+1-x^3\)

\(=8x^3-x^2-4x-3\)

\(=\left(8x^3-8x^2\right)+\left(7x^2-7x\right)+\left(3x-3\right)\)

\(=\left(x-1\right)\left(8x^2+7x+3\right)\)

\(a,5:5^2+2^3.3^2\)

\(=5^4+72\)

\(=697\)

\(b,8^3.25-8^3.23\)

\(=8^3.\left(25-23\right)\)

\(=8^3.2\)

\(=1024\)

\(c,80-\left(4.5^2-3^2.2^3\right)\)

\(=80-\left(100-72\right)\)

\(=80-28\)

\(=52\)

\(d,\left(12^4-6^4+2.3^4\right):3^4\)

\(=\left(20736-1296+162\right):3^4\)

\(=19602:3^4\)

\(=242\)

28 tháng 9 2020

125.6.32.75

= ( 125 . 32 ) . ( 75 . 6 )

= 4000 . 450

= 1.800.000

Học Tốt

28 tháng 9 2020

125.6.32.75

=(125.6).(32.75)

=750.2400

=1800000

28 tháng 9 2020

ĐK: \(x\ne-1\)

\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2=3-2\frac{x^2}{x+1}\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+2\frac{x^2}{x+1}-3=0\)

\(\Rightarrow\frac{x^2}{x+1}=1\Rightarrow x_{1,2}=\frac{1\pm\sqrt{5}}{2}\)hoặc \(\frac{x^2}{x+1}=-3\)(vô nghiệm)

28 tháng 9 2020

a) Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)

                    \(8^{15}=\left(2^3\right)^{15}=2^{45}\)

mà \(76>45\)

\(\Rightarrow2^{76}>2^{45}\)

hay \(16^{19}>8^{15}\)

b) Ta có : \(625^2=\left(5^4\right)^2=5^8\)

                 \(125^6=\left(5^3\right)^6=5^{18}\)

mà \(8< 18\)

\(\Rightarrow5^8< 5^{18}\)

hay \(625^2< 125^6\)

c) Ta có : \(3^{14}< 3^{21}< 4^{21}\)

\(\Rightarrow3^{14}< 4^{21}\)

d) Ta có : \(729^3=\left(3^6\right)^3=3^{18}\)

                   \(9^{21}=\left(3^2\right)^{21}=3^{42}\)

mà \(18< 42\)

\(\Rightarrow3^{18}< 3^{42}\)

hay \(729^3< 9^{21}\)