Gpt nghiệm nguyên \(5x^2+2y^2+4xy+9y-8x+14=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\sqrt{x^2}=7\)
\(\Leftrightarrow\left|x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(\sqrt{\left(x-2020\right)^2}=10\)
\(\Leftrightarrow\left|x-2020\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)
c) đk: \(x\ge2\)
\(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)
\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)
\(\Leftrightarrow12\sqrt{x-2}=x+4\)
\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow x^2-136x+304=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)
d) đk: \(x\ge-1\)
\(\sqrt{25x+25}-2\sqrt{64x+64}=7\)
\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)
\(\Leftrightarrow-11\sqrt{x+1}=7\)
Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)
=> pt vô nghiệm

a) Trên AB lấy điểm J sao cho MJ // CD
∆BCD có M là trung điểm của BC và MJ // CD nên J là trung điểm của BD => BJ = DJ (1)
∆AJM có I là trung điểm của AM và ID // MJ nên D là trung điểm AJ => AD = DJ (2)
Từ (1) và (2) suy ra AD = DJ = JB => AD/AB = 1/3
b) ∆AMC và ∆AMB có cùng chiều cao hạ từ A và hai cạnh đáy của hai tam giác này bằng nhau (MB = MC) nên SAMC = SAMB = SABC/2 = 24 (cm2)
∆AIC và ∆CIM có cùng chiều cao hạ từ C và hai cạnh đáy của hai tam giác bằng nhau (AI = IM) nên SAIC = SCIM = SAMC/2 = 12 (cm2)
Ta có: DI = 1/2JM = 1/2.1/2CD = 1/4CD => DI = 1/3IC => SADI = 1/3SAIC = 4 (cm2)
Vậy diện tích tam giác ADI là 4cm2

Bài 1:
a) \(2x^3-x^2-2x+1\) (đã sửa đề)
\(=x^2\left(2x-1\right)-\left(2x-1\right)\)
\(=\left(x^2-1\right)\left(2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)
b) \(4x^2-16x^2y^2+y^2+4xy\)
\(=\left(4x^2+4xy+y^2\right)-16x^2y^2\)
\(=\left(2x+y\right)^2-\left(4xy\right)^2\)
\(=\left(2x-4xy+y\right)\left(2x+4xy+y\right)\)
c) \(x^3-16x-15x\left(x-4\right)\)
\(=x^3-16x-15x^2+60x\)
\(=x^3-15x^2+44x\)
\(=x\left(x^2-15x+44\right)\)
\(=x\left(x-4\right)\left(x-11\right)\)
d) \(x\left(x-y\right)+y\left(x-y\right)^2-xy+x^2\)
\(=x\left(x-y\right)+y\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left[x+y\left(x-y\right)+x\right]\)
\(=\left(x-y\right)\left(2x+xy-y^2\right)\)
Bài 2:
a) \(x^4+1-2x^2\)
\(=\left(x^2\right)^2-2x^2+1\)
\(=\left(x^2-1\right)^2\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
b) \(x^2-y^2-3y+3x\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
c) \(y^2-4x^2+4x-1\) (đã sửa đề)
\(=y^2-\left(2x-1\right)^2\)
\(=\left(y-2x+1\right)\left(y+2x-1\right)\)
d) \(x^3\left(2+1\right)^2-\left(x+2\right)^2+1-x^3\)
\(=9x^3-x^2-4x-4+1-x^3\)
\(=8x^3-x^2-4x-3\)
\(=\left(8x^3-8x^2\right)+\left(7x^2-7x\right)+\left(3x-3\right)\)
\(=\left(x-1\right)\left(8x^2+7x+3\right)\)

\(a,5:5^2+2^3.3^2\)
\(=5^4+72\)
\(=697\)
\(b,8^3.25-8^3.23\)
\(=8^3.\left(25-23\right)\)
\(=8^3.2\)
\(=1024\)
\(c,80-\left(4.5^2-3^2.2^3\right)\)
\(=80-\left(100-72\right)\)
\(=80-28\)
\(=52\)
\(d,\left(12^4-6^4+2.3^4\right):3^4\)
\(=\left(20736-1296+162\right):3^4\)
\(=19602:3^4\)
\(=242\)

125.6.32.75
= ( 125 . 32 ) . ( 75 . 6 )
= 4000 . 450
= 1.800.000
Học Tốt

ĐK: \(x\ne-1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2=3-2\frac{x^2}{x+1}\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+2\frac{x^2}{x+1}-3=0\)
\(\Rightarrow\frac{x^2}{x+1}=1\Rightarrow x_{1,2}=\frac{1\pm\sqrt{5}}{2}\)hoặc \(\frac{x^2}{x+1}=-3\)(vô nghiệm)

a) Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{15}=\left(2^3\right)^{15}=2^{45}\)
mà \(76>45\)
\(\Rightarrow2^{76}>2^{45}\)
hay \(16^{19}>8^{15}\)
b) Ta có : \(625^2=\left(5^4\right)^2=5^8\)
\(125^6=\left(5^3\right)^6=5^{18}\)
mà \(8< 18\)
\(\Rightarrow5^8< 5^{18}\)
hay \(625^2< 125^6\)
c) Ta có : \(3^{14}< 3^{21}< 4^{21}\)
\(\Rightarrow3^{14}< 4^{21}\)
d) Ta có : \(729^3=\left(3^6\right)^3=3^{18}\)
\(9^{21}=\left(3^2\right)^{21}=3^{42}\)
mà \(18< 42\)
\(\Rightarrow3^{18}< 3^{42}\)
hay \(729^3< 9^{21}\)