cho a+b+c=
chứng minh
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
0

MN
2

TT
24 tháng 12 2020
Có :
\(\left(a^2+4b^2+9c^2\right).\left(1+\frac{1}{4}+\frac{1}{9}\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\frac{49}{36}\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\frac{7}{6}\)
PN
22 tháng 1 2021
c2 : \(\frac{36a^2}{36}+\frac{36b^2}{9}+\frac{36c^2}{4}\ge\frac{\left(6a+6b+6c\right)^2}{49}=\frac{6^2\left(a+b+c\right)^2}{7^2}\)
\(< =>\frac{6^2\left(a+b+c\right)^2}{7^2}\le1< =>a+b+c\le\frac{7}{6}\)
NM
0
