Cho ab = a + b. Tính \(\left(a^3+b^3-a^3b^3\right)+27a^6b^6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ:...
\(\Leftrightarrow\left(5x^2+10x+1\right)+5\sqrt{5x^2+10x+1}-36=0\)



a) Chứng minh tứ giác OBDF nội tiếp.
Xác định tâm I đường tròn ngoại tiếp tứ OBDF.
Giải :
Ta có: \(\widehat{DBO}=90^o\)và \(\widehat{DFO}=90^o\)(tính chất tiếp tuyến)
Tứ giác OBDF có \(\widehat{DBO}+\widehat{DFO}=90^o+90^o=180^o\)nên nội tiếp được trongmột đường tròn.
Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD
mk làm được phần a rồi đấy, ai giúp mk phần b,c,d thôi. cảm ơn
tiện thể xem hộ xem đúng k nha

\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{a^2b^2}{\left(a^2b^2+1\right)\left(a^2+b^2\right)}\le\frac{ab}{2\left(a^2b^2+1\right)}=\frac{1}{2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)}\)
\(A\le\frac{1}{2\left(\frac{1}{2}+\frac{15}{16.\frac{1}{4}}\right)}=\frac{2}{17}\)

A B C H I K M
a, Áp dụng định lí Pytago vào câc tam giác vuông ta được
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)
\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)
\(=AI^2+BK^2+CH^2\)
b, Đặt \(P=AK^2+BH^2+CI^2\)
\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)
\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)
\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)
Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)
Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)
\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)
\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi
Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC

A B C H M
Ta có \(BC=BH+HC=9+16=25\)
Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)
Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)
\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)
\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)
\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)
\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)
Có: \(ab=a+b\)
\(\Leftrightarrow b=a\left(b-1\right)\)
\(\Leftrightarrow a=\frac{b}{b-1}=1-\frac{1}{b-1}\)
\(\Leftrightarrow b-1\inƯ\left(1\right)=\left\{1;-1\right\}\).Tương tự với a
\(\Rightarrow\hept{\begin{cases}b=2\Rightarrow a=2\\b=0\Rightarrow a=1\end{cases}\&a=0;b=1}\)
Tính được rồi đấy