Cho hai đa thức sau:
f(x)=3x4-5x3-x2+1007
g(x)=2x4+3x3+x-1007
a) Tính f(x)-g(x)-2014
b) Tìm đa thức h(x) sao cho 2014+g(x)-h(x)=f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
Bài mình vừa sưu tập được của bạn lanphung https://hoidap247.com/thong-tin-ca-nhan/82620
a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)
b) |17x - 5| - |17x + 5| = 0
=> |17x - 5| = |17x + 5|
=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0 là giá trị cần tìm
a) Xét tam giác ACE và tam giác AKE
có AE chung
góc CAE =góc KAE (GT)
góc ECA = góc EKA =900
suy ra tam giác ACE = tam giác AKE (cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra AC=AK suy ra A thuộc đường trung trực của CK (2)
Từ (1) suy ra EK=EC suy ra E thuộc đường trung trực của CK (3)
Từ(2) và (3) suy ra AE là đường trung trực của CK
c) tam giác ABC vuông tại C, có góc CAB = 600
suy ra AC=AB:2 ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
mà AK=AC , AK +KB=AB
suy ra AK=AC=KB
d) tam giác BDE=tam giác BKE (cạnh huyền-góc nhọn)
(Câu này mình tìm thấy của Lê Thị Nhung ở h https://h.vn/vip/lethinhung262)
tèo hỏi tí
TIẾNG ANH CÓ BAO NHIÊU CHỮ CÁI?
tí nói :
dễ 26 chứ gì ,easy
tèo lại nói :
sai gòi , phải là 3 chữ thôi
tí:
Why ?
tèo:
là tiếng 'Anh' chứ ko phải là tiếng anh hiểu hông?
tí
aaa, hiểu rùi .
nói thêm tí ko hiểu nhưng cố tỏ ra hiểu
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: tam giác ABC cân tại A (gt)
=> AB = AC ; góc ABC = góc ACB (định lí)
Lại có: góc ABD là góc ngoài của tam giác ABC tại đỉnh B và góc ACE là góc ngoài của tam giác ABC tại đỉnh C
=> Góc ABD = góc BAC + góc ACB
Góc ACE = góc BAC + góc ABC
Mà góc ACB = góc ABC (chứng minh trên)
=> Góc ABD = góc ACE (đpcm)
b) Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
Góc ABD = góc ACE (chứng minh trên)
BD = CE (gt)
=> Tam giác ABD = tam giác ACE (đpcm)
c) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A (dấu hiệu nhận biết) (đpcm)
d) Ta có: BH _|_ AD tại H (gt) => Góc AHB = 90o
CK _|_ AE tại K (gt) => Góc AKC = 90o
=> Góc AHB = góc AKC = 90o
Lại có: góc BAD = góc CAE (vì tam giác ABD = tam giác ACE)
=> Góc BAH = góc CAE
Xét tam giác ABH vào tam giác ACK có:
Góc AHB = góc AKC = 90o (chứng minh trên)
Góc BAH = góc CAE (chứng minh trên)
AB = AC (chứng minh trên)
=> Tam giác ABH = tam giác ACE (cạnh huyền - góc nhọn)
=> Góc ABH = góc ACE (2 góc tương ứng)
Mà góc ABH + góc ABC + góc CBI = góc ACK + góc ACB + góc BCI = 180o
=> Góc CBI = góc BCI (vì góc ABH = góc ACE, góc ABC = góc ACB)
=> Tam giác BCI cân tại I (dấu hiệu nhận biết) (đpcm)
A B C M D
a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :
BM = MC ( M là trung điểm của BC )
AM = MD ( giả thiết )
\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )
=> \(\Delta AMC\)= \(\Delta DMB\) ( c.g.c )
=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )
b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)
Vì BM = MA => \(\Delta AMB\)cân tại M .
=> \(\widehat{MAB}=\widehat{MBA}\)
Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)( \(\Delta ABC\perp A\))
hay \(\widehat{ABM}+\widehat{ACM}=90^0\)
vì \(\widehat{MCA}=\widehat{MDB}\); \(\widehat{MAB}=\widehat{MBA}\)
=> \(\widehat{BAM}+\widehat{BDM}=90^0\)
=> \(\widehat{BAD}=90^0\)
c , Vì AM = BM
mà BM = \(\frac{1}{2}BC\)
=> AM = \(\frac{1}{2}BC\)
Áp dụng BĐT dạng |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x+4|+|x+2018|=|x+4|+|−x−2018|≥|x+4+(−x−2018)|=2014|x+4|+|x+2018|=|x+4|+|−x−2018|≥|x+4+(−x−2018)|=2014
Mà: |x+17|≥0|x+17|≥0 (theo tính chất trị tuyệt đối)
⇒E=|x+17|+|x+4|+|x+2018|≥0+2014=2014⇒E=|x+17|+|x+4|+|x+2018|≥0+2014=2014
Vậy Emin=2014Emin=2014
Dấu "=" xảy ra khi {(x+4)(−x−2018)≥0x+17=0⇔x=−17
vậy x=-17
Áp dụng BĐT dạng |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x+4|+|x+2018|=|x+4|+|−x−2018|≥|x+4+(−x−2018)|=2014|x+4|+|x+2018|=|x+4|+|−x−2018|≥|x+4+(−x−2018)|=2014
Mà: |x+17|≥0|x+17|≥0 (theo tính chất trị tuyệt đối)
⇒E=|x+17|+|x+4|+|x+2018|≥0+2014=2014⇒E=|x+17|+|x+4|+|x+2018|≥0+2014=2014
Vậy Emin=2014Emin=2014
Dấu "=" xảy ra khi {(x+4)(−x−2018)≥0x+17=0⇔x=−17
Ta có:
\(A=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+...+n\left(n+1\right)\cdot3\)
\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\cdot\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)\cdot n\cdot\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
a)+)\(f\left(x\right)=3x^4-5x^3-x^2+1007\)
\(\Rightarrow f\left(x\right)=\left(3x^2-5x-1\right)x^2+1007\)
+)\(g\left(x\right)=2x^4+3x^3-1007\)
\(\Rightarrow g\left(x\right)=\left(2x^2+3x\right)x^2-1007\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)x^2+1007\right]-\left[\left(2x^2+3x\right)x^2-1007\right]-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left(3x^2-5x-1\right)x^2+1007-\left(2x^2+3x\right)x^2+1007-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)-\left(2x^2+3x\right)\right]x^2+\left(1007+1007-2014\right)\)
\(f\left(x\right)-g\left(x\right)-2014=3x^2-5x-1-2x^2-3x\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=x^2-2x-1=\left(x-1\right)^2\)
b)\(2014+g\left(x\right)-h\left(x\right)=f\left(x\right)\)
\(\Rightarrow-h\left(x\right)=f\left(x\right)-g\left(x\right)-2014\)
\(\Rightarrow-h\left(x\right)=\left(x-1\right)^2\)
\(\Rightarrow h\left(x\right)=-\left[\left(x-1\right)^2\right]\)
Chúc bạn học tốt