\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\)
phân tích đa thức trên thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{27}-3\sqrt{2}+2\sqrt{6}\right):3\sqrt{3}\)
\(=\left(3\sqrt{3}-3\sqrt{2}+2\sqrt{6}\right):3\sqrt{3}\)
dk \(\hept{\begin{cases}4x+1\ge0\\9x+4\ge0\end{cases}< =>x\ge-\frac{1}{4}}.\)
Xét x=0 là nghiệm
xét x khác 0
<=> \(1-\sqrt{4x+1}+2-\sqrt{9x+4}=3x< =>\)\(\frac{-4x}{1+\sqrt{4x+1}}+\frac{-9x}{2+\sqrt{9x+4}}=3x< =>\)
\(\frac{-4}{1+\sqrt{4x+1}}-\frac{9}{2+\sqrt{9x+4}}=3\)( dễ thấy vế trái <0 còn vế phải >0 nên vô nghiệm)
Vậy x=0 là nghiêm duy nhất
TXĐ: \(D=\left(-1;1\right)\)
\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)
\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)
Đặt \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)
=> \(\sqrt{1-x^2}.A=2018x+2020\)
=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)
<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)
pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)
<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)
<=> \(A^2-8076\ge0\)
<=> \(A\ge\sqrt{8076}\)
"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)
Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại \(x=-\frac{1009}{1010}\)
ĐK x >0
\(P< \frac{21}{2}\Leftrightarrow\frac{2x+2\sqrt{x}+2}{\sqrt{x}}< \frac{21}{2}\Leftrightarrow4x+4\sqrt{x}+4< 21\sqrt{x}\)
<=> \(4x-17\sqrt{x}+4< 0\)( đặt \(\sqrt{x}=t>0\) đưa về phương trình bậc 2 rồi giải đen ta)
<=> \(\left(4\sqrt{x}-1\right)\left(\sqrt{x}-4\right)< 0\)
<=> \(\frac{1}{4}< \sqrt{x}< 4\)( làm tắt )
<=> \(\frac{1}{16}< x< 16\)
\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)
Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:
\(\left(t-x\right)\left(t+x\right)-3x^2\)
\(=t^2-x^2-3x^2\)
\(=t^2-4x^2\)
\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:
\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)
\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)