(x - 1)x+2 = (x - 1)x+6 và x \(\in\) \(ℤ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
ta có :
\(\frac{9a^2+4b^2}{9a^2-4b^2}=\frac{9b^2k^2+4b^2}{9b^2k^2-4b^2}=\frac{b^2\left(9k^2+4\right)}{b^2\left(9k^2-4\right)}=\frac{9k^2+4}{9k^2-4}\)
\(\frac{9c^2+4d^2}{9c^2-4d^2}=\frac{9d^2k^2+4d^2}{9d^2k^2-4d^2}=\frac{d^2\left(9k^2+4\right)}{d^2\left(9k^2-4\right)}=\frac{9k^2+4}{9k^2-4}\)
=> đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\Rightarrow a^2=b^2k^2\\\frac{c}{d}=k\Rightarrow c=dk\Rightarrow c^2=d^2k^2\end{cases}}\)
đặt VT = \(\frac{9a^2+4b^2}{9a^2-4b^2}=\frac{9b^2k^2+4b^2}{9b^2k^2-4b^2}\) \(=\frac{b^2\left(9k^2+4\right)}{b^2\left(9k^2-4\right)}=\frac{9k^2+4}{9k^2-4}\)
đặt VP = \(\frac{9c^2+4d^2}{9c^2-4d^2}=\frac{9d^2k^2+4d^2}{9d^2k^2-4d^2}\) \(=\frac{d^2\left(9k^2+4\right)}{d^2\left(9k^2-4\right)}=\frac{9k^2+4}{9k^2-4}\)
=> VT = VP
vậy 2 bt trên = nhau



Bài làm
Ta có: ˆxOy=ˆxOm+ˆyOn+ˆmOz+ˆzOn
Mà ˆxOm=ˆyOn=2ˆxOm
Oz là tia phân giác của ˆmOn
=> ˆmOz=ˆzOn=2ˆmOz
=> ˆxOy=2ˆxOm+2ˆmOz
Hay 1800=2ˆxOm+2ˆmOz
=> 1800=2(ˆxOm+ˆmOz)
=> ˆxOm+ˆmOz=1800:2
=> ˆxOm+ˆmOz=900xOm^+mOz^=90
Hay ˆxOz=900
=> Oz⊥xy
Vậy Oz⊥xy( đpcm )

\(M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}.\)
\(3M=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+....+\frac{100}{3^{99}}\)
\(3M-M=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}-\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}\)
\(2M=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{100}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)
\(2M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt :
\(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}\)
\(3N=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{98}}\)
\(3N-N=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(2N=1-\frac{1}{3^{99}}\)
\(N=\frac{1-\frac{1}{3^{99}}}{2}\)
Thay vào ta có :
\(2M=1+\frac{1-\frac{1}{3^{99}}}{2}-\frac{100}{3^{100}}\)
\(2M=1+\frac{1}{2}-\frac{1}{2\times3^{100}}-\frac{100}{3^{100}}< 1+\frac{1}{2}=\frac{3}{2}\)
Ta có : \(\frac{3}{4}< \frac{3}{2}\)
\(\Rightarrow\)\(2M=1+\frac{1}{2}-\frac{1}{2\times3^{100}}-\frac{100}{3^{100}}< \frac{3}{4}\)
\(\Rightarrow\)\(M< \frac{3}{4}\)
* Sai thì xin lỗi ạ ! *



( x - 1 )x+2 = ( x - 1 )x+6
=> ( x - 1 )x+6 -(x-1)x+2 = 0
=> ( x - 1 )x+2 . [ ( x - 1 )4 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1∈\left\{1;-1\right\}\end{cases}}\)
Từ x - 1 ∈ { 1 ; -1 }
\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}\)