K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Bài 1 :                                        Bài giải

A B C D E F O

a, Trong \(\Delta ABC\) vuông tại A có : 

\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)

b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)

Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có : 

\(BD\) : cạnh huyền - cạnh chung 

\(\widehat{B_1}=\widehat{B_2}\) ( cmt )

\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)

c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)

Mà \(DA=DE\text{ nên }DA< DC\)

d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)

\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)

31 tháng 8 2020

M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )

= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x

= 2 

Vậy M không phụ thuộc vào biến ( đpcm )

N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3

= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )

= [ 2x - 1 - 2x ]3

= [ -1 ]3 = -1

Vậy N không phụ thuộc vào biến ( đpcm )

31 tháng 8 2020

a. \(2a^2+5ab-3b^2-7b-2\)

\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)

\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)

\(=\left(2a-b-2\right)\left(a+3b+1\right)\)

b. \(2x^2-7xy+x+3y^2-3y\)

\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)

\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

c. \(6x^2-xy-2y^2+3x-2y\)

\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)

\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y+1\right)\)

31 tháng 8 2020

P=a2021+b2021+c2021

P=(a+b+c)2021

mà a+b+c = 1

=> P= 12021=1

31 tháng 8 2020

\(=x^3-3x^2+3x-1-\left(x^3+x^2+x-x^2-x-1\right)-3x+3x^2\)  

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x+3x^2\)   

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)   

\(=0\)   

Vậy giá trị biểu thức không phụ thuộc vào biến x 

31 tháng 8 2020

( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x 

= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) - 3x + 3x2

= x3 - 3x2 + 3x - 1 - x3 + 1 - 3x + 3x2

= 0

Vậy biểu thức không phụ thuộc vào biến ( đpcm )

31 tháng 8 2020

\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))

\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)

\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)

\(=-\frac{5}{2}\)

\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))

\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)

\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)

\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)

31 tháng 8 2020

a) 

Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)    

\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)    

\(=\frac{-5}{2}\)    

b) 

Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)     

\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)   

\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)   

\(=\frac{-9\left(x+6\right)}{x+5}\)  

\(=\frac{-9x-54}{x+5}\)  

\(=\frac{-9\left(x+5\right)-9}{x+5}\) 

\(=-9-\frac{9}{x+5}\)