Bài 2: Gía trị của mỗi đa thức sau có phụ thuộc vào giá trị của biến không
a) P= (x+2) mũ 3 + (x-2) mũ 3 - 2x(x mũ 2 + 12 ) ?
b) Q= (x-1) mũ 3 - (x+1) mũ 3 + 6(x+1)(x-1) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm :
Ta có :
\(x^2-6x+5-t^2-4t\)
\(=x^2-6x+9-t^2-4t-4\)
\(=\left(x^2-6x+9\right)-\left(t^2+4t+4\right)\)
\(=\left(x-9\right)^2-\left(t+2\right)^2\)
Học tốt
x2 - 6x + 5 - t2 - 4t
= ( x2 - 6x + 9 ) - ( t2 + 4t + 4 )
= ( x - 3 )2 - ( t + 2 )2
= [ ( x - 3 ) - ( t + 2 ) ][ ( x - 3 ) + ( t + 2 ) ]
= ( x - 3 - t - 2 )( x - 3 + t + 2 )
= ( x - t - 5 )( x + t - 1 )
Phần in nghiêng mình viết thêm < nếu bạn cần >

a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )
= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x
= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x
= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )
= -38x - 34
b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )
= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )
= 8x2 + 40x + 50 + 3( 16x2 - 1 )
= 8x2 + 40x + 50 + 48x2 - 3
= 56x2 + 40x + 47
c) ( x - 1 )3 - x( x - 3 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1
= x3 - 3x2 + 3x - x3 + 6x2 - 9x
= 3x2 - 6x
d) ( x + 2 )3 - x2( x + 6 )
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= 12x + 8
e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2
= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= -3x3 + 2x2 - 5x - 5
f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )
= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac
= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac
= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac
= a2
a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)
Dùng hẳng đẳng thức thứ nhất + hai :
= \(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)
= \(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)
= \(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)
= \(-38x-34\)
b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)
Dùng đẳng thức thứ 1 + 3
= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]
= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)
= 8x2 + 40x + 50 - (3 - 48x2)
= 8x2 + 40x + 50 - 3 + 48x2
= 56x2 + 40x + 47
c) (x - 1)3 - x(x - 3)2 + 1
Dùng đẳng thức 2 + 5:
= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1
= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1
= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)
= 3x2 - 6x
d) (x + 2)3 - x2(x + 6)
= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8
e) Dùng đẳng thức thứ 3,4 và 2
= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)
= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)
= 2x2 - 5 - 3x3 - 5x
f) Đặt \(a+b-c=A\)
\(b-c=B\)
= \(A^2-B^2-2AB\)
= \(A^2-2AB+\left(-B\right)^2\)
\(=A^2-2AB+B^2\)
= (A - B)2
= (a + b - c - (b - c))2
= (a + b - c - b + c)2
= a2

Thêm gt \(x\in Z\)
a) \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\left(1+\frac{1}{2}\right)^2+\frac{3}{4}=3>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\left(1-\frac{1}{2}\right)^2+\frac{3}{4}=1>0\)
\(\Rightarrow x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)>3.1=3\)và \(\in Z\)
\(\Rightarrow x^4+x^2+1\)là hợp số.
b) \(x^4+4x=x\left(x^3+4\right)>1\left(1^3+4\right)=5\)và \(\in Z\)
\(\Rightarrow x^4+4x\)là hợp số.
Phần b) mình nhầm chút:
\(x^4+4x=x\left(x^3+4\right)\)
\(\hept{\begin{cases}x>1>0\\x^3+4>1^3+4=5>0\end{cases}}\)\(\Rightarrow x^4+4x=x\left(x^3+4\right)>1.5=5\)và \(\in Z\)
\(\Rightarrow x^4+4x\)là hợp số.


a) Ta có: \(\left(a-b\right)\left(a^2-c^2\right)-\left(a-c\right)\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+c\right)-\left(a-c\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(a+c-a-b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(c-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Ta có: \(x^2-y^2+10x+8y+9\)
\(=\left(x^2+10x+25\right)-\left(y^2-8y+16\right)\)
\(=\left(x+5\right)^2-\left(y-4\right)^2\)
\(=\left(x+5-y+4\right)\left(x+5+y-4\right)\)
\(=\left(x-y+9\right)\left(x+y+1\right)\)

( 2x - 1 )( 3x + 2 )( 3 - x )
= [ ( 2x - 1 )( 3x + 2 ) ]( 3 - x )
= ( 6x2 + 4x - 3x - 2 )( 3 - x )
= ( 6x2 + x - 2 )( 3 - x )
= 18x2 - 6x3 + 3x - x2 - 6 + 2x
= -6x3 + 17x2 + 5x - 6

a) gọi I là giao điểm của AH và PN
xét tam giác ABC có
AP=BF và AN=NC
Do đó PN là đường trung bình của tam giác ABC
==>PN//BC mà AH vuông góc BC ==>PN vuông góc AH (1)
ta có : PN//BC mà PI thuộc PN ==> PI//BC
Xét tam giác AHB có
PI//BC và AP=BP
==>AI=IH (2)
TỪ (1)(2) ==)PN là đg trung trực của AH

Ta có: \(x^4+x^3+x+1=0\)
\(\Leftrightarrow\left(x^4+x^3\right)+\left(x+1\right)=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )
= 0
Vậy giá trị của P không phụ thuộc vào biến
Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 - ( x3 + 3x2 + 3x + 1 ) + 6( x2 - 1 )
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )
= -8
Vậy giá trị của Q không phụ thuộc vào biến