phân tích đa thức thành nhân tử
a^7-b^7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow x+y+z=0\).
\(P=\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz}{\left(-x\right)\left(-y\right)\left(-z\right)}=-1\)
\(x=2\)
XL mik đag bận nên không giải chi tiết cho bn đc!!!
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right)\div\left(\frac{1}{x}+x-2\right)\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
\(=\left(\frac{1}{x\left(x+1\right)}-\frac{2-x}{x+1}\right)\div\left(\frac{1}{x}+\frac{x^2}{x}-\frac{2x}{x}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}-\frac{x\left(2-x\right)}{x\left(x+1\right)}\right)\div\left(\frac{x^2-2x+1}{x}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}-\frac{2x-x^2}{x\left(x+1\right)}\right)\times\frac{x}{\left(x-1\right)^2}\)
\(=\left(\frac{1-2x+x^2}{x\left(x+1\right)}\right)\times\frac{x}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{x\left(x+1\right)}\times\frac{x}{\left(x-1\right)^2}\)
\(=\frac{1}{x+1}\)
a) \(\frac{2x-2y}{x^2-y^2}=\frac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{2}{x+y}\)
\(\frac{5}{2x^2+4xy+2y^2}=\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}\)
MTC : 2( x + y )2
=> \(\hept{\begin{cases}\frac{2x-2y}{x^2-y^2}=\frac{2}{x+y}=\frac{2\times2\left(x+y\right)}{\left(x+y\right)\times2\left(x+y\right)}=\frac{4x+4y}{2\left(x+y\right)^2}\\\frac{5}{2x^2+4xy+2y^2}=\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}\end{cases}}\)
b) \(\frac{x-y}{x^3-y^3}=\frac{x-y}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{1}{x^2+xy+y^2}\)
\(\frac{5}{2x^2+2x+2}=\frac{5}{2\left(x^2+x+1\right)}\)
\(\frac{6}{4x^3+4x+4}=\frac{6}{4\left(x^2+x+1\right)}=\frac{3}{2\left(x^2+x+1\right)}\)
MTC : 2( x2 + x + 1 )( x2 + xy + y2 )
=> \(\frac{1}{x^2+xy+y^2}=\frac{2\left(x^2+x+1\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{2x^2+2x+2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)
=> \(\frac{5}{2\left(x^2+x+1\right)}=\frac{5\left(x^2+xy+y^2\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{5x^2+5xy+5y^2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)
=> \(\frac{3}{2\left(x^2+x+1\right)}=\frac{3\left(x^2+xy+y^2\right)}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}=\frac{3x^2+3xy+3y^2}{2\left(x^2+x+1\right)\left(x^2+xy+y^2\right)}\)
a, \(\frac{2x-2y}{x^2-y^2};\frac{5}{2x^2+4xy+2y^2}\)
Ta có : \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
\(2x^2+4xy+2y^2=2\left(x^2+2xy+y^2\right)=2\left(x+y\right)^2\)
MTC : \(2\left(x-y\right)\left(x+y\right)^2\)
\(\frac{2x-2y}{x^2-y^2}=\frac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{2\left(x-y\right)\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)^2}\)
\(\frac{5}{2\left(x^2+2xy+y^2\right)}=\frac{5}{2\left(x+y\right)^2}=\frac{5\left(x-y\right)}{2\left(x-y\right)\left(x+y\right)^2}\)
Ê mày đang x,y,z sao lại nhảy sang a,b,c thế :v
Mà sao làm tắt thế '-' Từ đẳng thức kia phải biến đổi tương đương rồi giải chứ duma ==
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\right)\)
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^c+a^2b^4+ab^5+b^6\right)\)