Giá tiền mua 15 quyển vở và 14 cái bút là 124000 đồng. Nếu mua 13 quyển vở và 11 cái bút cùng loại đó thì hết 103500 đồng. Tính giá tiền một cái bút, giá tiền một quyển vở.
Trả lời:
Giá tiền một quyển vở là: đồng.
Giá tiền một cái bút là: đồng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
Ta có: \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\left(\frac{x+2003}{x}\right)\) \(\left(ĐK:x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x^2-4x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right).\left(x+1\right)}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\left(\frac{x^2-1}{x^2-1}\right).\left(\frac{x+2003}{x}\right)\)
\(\Leftrightarrow A=\frac{x+2003}{x}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\left(\frac{x+2003}{x}\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)\)
\(=\left(\frac{x^2-1}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{x-2003}{x}\right)=\frac{x-2003}{x}\)
A B C H E F M N
Theo tính chất đường thẳng song song :
\(AK=KI=IH\)( gt )
=> AE = EM = MB
=> AF = FN = NC
Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm
\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm
hay \(2EF=BC\)(*)
Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt )
\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN )
Suy ra : EF // MN và EF = 1/2 MN
Ta có : \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)
\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)
\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)
\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)
Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2
\(x+\left(x-2\right)\left(2x-1\right)=2\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=2-x\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)+\left(x-2\right)=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow x=0;2\)
Vậy tập nghiệm phương trình là S = { 0 ; 2 }
x + ( x - 2 )( 2x + 1 ) = 2
<=> x + 2x2 - 3x - 2 - 2 = 0
<=> 2x2 - 2x - 4 = 0
<=> x2 - x - 2 = 0
<=> x2 - 2x + x - 2 = 0
<=> x( x - 2 ) + ( x - 2 ) = 0
<=> ( x - 2 )( x + 1 ) = 0
<=> x = 2 hoặc x = -1
Vậy phương trình có tập nghiệm S = { 2 ; -1 }
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-4z^2\right]\)
\(=3.\left(x-y-2z\right).\left(x-y+2z\right)\)
Gớm Tú ơi, làm gì mà Dis nhiều thế :)) Nghiếp khiếp vậy mày:))))
a) \(A=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=2\sqrt{3}:\sqrt{3}-5\sqrt{27}:\sqrt{3}+4\sqrt{12}:\sqrt{3}\)
\(=2\sqrt{3:3}-5\sqrt{27:3}+4\sqrt{12:3}\)
\(=2\sqrt{1}-5\sqrt{9}+4\sqrt{4}=2.1-5.3+4.2=2-15+8=-5\)
\(B=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right).\left(\sqrt{2-\sqrt{3}}\right)^2}{\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}}\)
\(=\frac{\left(2+\sqrt{3}\right).\left(2-\sqrt{3}\right)}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=\frac{4-3}{\sqrt{4-3}}=\frac{1}{\sqrt{1}}=1\)
b) \(ĐKXĐ:x\ge\frac{7}{2}\)
Thay \(A=-5\), \(B=1\)vào biểu thức ta được:
\(1-3\sqrt{2x-7}=-5\)\(\Leftrightarrow3\sqrt{2x-7}=6\)
\(\Leftrightarrow\sqrt{2x-7}=2\)\(\Leftrightarrow2x-7=4\)
\(\Leftrightarrow2x=11\)\(\Leftrightarrow x=\frac{11}{2}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{11}{2}\)
gì cái này là hệ phương trình của lớp 9 mà ? :DD
Gọi giá tiền mua 1 quyển vở là x, giá tiền mua 1 cái bút là y
( đồng ; x, y > 0 )
Theo đề bài ta có :
Mua 15 quyển vở và 14 cái bút hết 124 000đ
=> 15x + 14y = 124 000 (1)
Mua 13 quyển vở và 11 cái bút cùng loại thì hết 103 500đ
=> 13x + 11y = 103 500 (2)
Từ (1) và (2) => Ta có hệ phương trình
\(\hept{\begin{cases}15x+14y=124000\\13x+11y=103500\end{cases}}\)( bạn tự trình bày cách giải )
Giải hệ ta được x = 5000 ( tm ) và y = 3500 ( tm )
Vậy giá tiền mua 1 quyển vở là 5000đ
giá tiền mua 1 cái bút là 3500đ