1 người đi xe đạp, 1 người đi xe máy, 1 người đi ô tô xuất phát từ A lần lượt. Lúc 8h, 9h, 10h cùng ngày và đi với vận tốc thứ tự là 10km/h, 30km/h, 50km/h. Hỏi đến lúc mấy giờ ô tô ở vị trí cách đều xe máy và xe đạp?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có \(A=3x^2+y^2+4x-y=3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}-\frac{4}{3}\)
\(=3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge-\frac{19}{12}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{2}\end{cases}}\)
Vậy BT đạt giá trị nhỏ nhất bằng -19/12 khi \(\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{2}\end{cases}}\)


x4-25x2+26x-4
= (x4-25x2)+ (26x-4)
= ((x2)2-(5x)2)+ 2(13x-2)
= (x2-5x)(x2+5x)

A B C d h H a
Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.
Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.
Vậy có đpcm

M N P Q O E F G H
Vì MNPQ là hình thoi nên ta có MN // PQ . Do vậy OE vuông góc với MN thì OE cũng vuông góc với PQ. Giả sử OE cắt PQ lại \(G'\)thì \(\widehat{EG'P}=90^o\)hay \(\widehat{OG'P}\) (1)
Mặt khác vì OG cũng vuông góc với PQ nên \(\widehat{OGP}=90^o\) (2)
Từ (1) và (2) suy ra \(\widehat{OG'P}=\widehat{OGP}=90^o\)\(\Rightarrow G'\equiv G\)
Mà \(E,O,G'\)thẳng hàng nên E,O,G thẳng hàng (đpcm)
Dòng thứ 2 mình viết thiếu là \(\widehat{OG'P}=90^o\) nhé ^^

\(x^3+2x-\left(x^2+2\right)^2=x\left(x^2+2\right)-\left(x^2+2\right)^2=\left(x^2+2\right)\left(x-x^2-2\right)\)

Giả sử tồn tại 1 số nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m không chia hết cho 7 (*)
a chia hết cho 7, ta đặt a=7k với k\(\in\)N*
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7(tính chất chia hết của 1 tổng)
Trái với giả sử đã đưa ra ở (*)
Vậy luôn tồn tại 1 nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m chia hết cho 7 (đpcm)
Như Ngọc làm, chứng minh phản chứng!
Giả sử tồn tại một số a là nguyên , m,n là số tự nhiên và a chia hết cho 7 sao cho \(a^{6n}+a^{6m}\) không chia hết cho 7
Khi đó đặt a = 7k (k thuộc N*)
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7 (vô lí)
Vậy điều giả sử sai. Ta có đpcm.
mik mới học lớp 6 nên ko bt làm bài này nha!