K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

Đầu tiên ta chứng minh: \(\frac{HA}{CA}.\frac{HB}{CB}+\frac{HB}{AB}.\frac{HC}{AC}+\frac{HC}{BC}.\frac{HA}{BA}=1\)


Đặt \(\frac{HA}{CB}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\) ta có: \(xy+yz+zx=1\)
Áp dụng bất đẳng thức Bu - nhi - a cho ba số x, y, z ta có: \(\left(xy+yz+zx\right)^2\le\left(x^2+y^2+z^2\right)^2\)
Hay \(\left(x^2+y^2+z^2\right)^2\ge1\Leftrightarrow x^2+y^2+z^2\ge1\)
Giả sử \(\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}=x+y+z\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx>1+2=3\)
Từ đó suy ra \(x+y+x\ge\sqrt{3}\Leftrightarrow\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}\ge\sqrt{3}\).

17 tháng 10 2016

Cái này thì mình chịu thôi ! Có biết cái khỉ gió ma toi gì đâu mà giải ! Hì Hì ! ^_^ Sorry nha

17 tháng 10 2016

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

16 tháng 10 2016

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

15 tháng 10 2016

làm đc nhắn tau với

18 tháng 10 2016

\(A=x^4+4x^3+10x^2+12x=x^4+4x^2+9+4x^3+12x+6x^2-9\)

<=>\(A=x^4+4x^2+9+4x^3+12x+6x^2-9\)

<=>\(A=\left(x^2\right)^2+\left(2x\right)^2+3^2+2.x^2.2x+2.2x.3+2.x^2.3-9\)

<=>\(A=\left(x^2+2x+3\right)^2-9\)

<=>\(A=\left[\left(x+1\right)^2+2\right]^2-9\)

Vì \(\left(x+1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge2\Leftrightarrow\left[\left(x+1\right)^2+2\right]^2\ge4\)\(\Leftrightarrow A=\left[\left(x+1\right)^2+2\right]^2-9\ge-5\)

=>Amin=-5 <=> x=-1

Vậy Amin=5 tại x=-1

14 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\)

\(\Rightarrow4x=3y\)

\(\Rightarrow\frac{x}{y}=\frac{3}{4}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=4\\y=-4\end{cases}}\)

DD
22 tháng 5 2021

Ta sẽ chứng minh \(n\)chia hết cho \(4\)và chia hết cho \(3\).

- Chứng minh \(n⋮4\)

Với \(n=2k+1\)ta có: 

\(m=5^{2k+1}+3^{2k+1}+1=3^{2k+1}+5.25^k+1\)

\(25\equiv1\left(mod3\right)\Rightarrow25^k\equiv1\left(mod3\right)\Rightarrow5.25^k\equiv2\left(mod3\right)\)

\(\Rightarrow m⋮3\).

Với \(n=4k+2\)

\(m=5^{4k+2}+3^{4k+2}+1=5^{4k+2}+9.81^k+1⋮5\)

(vì \(81\equiv1\left(mod5\right)\Rightarrow81^k\equiv1\left(mod5\right)\Rightarrow9.81^k+1⋮5\).

Do đó \(n⋮4\).

- Chứng minh \(n⋮3\)

Với \(n=6k+2\)

\(m=5^{6k+2}+3^{6k+2}+1=25.15625^k+9.729^k+1⋮7\)

(vì \(15625\equiv1\left(mod7\right)\Rightarrow15625^k\equiv1\left(mod7\right)\Rightarrow25.15625^k\equiv4\left(mod7\right)\)

\(729\equiv1\left(mod7\right)\Rightarrow729^k\equiv1\left(mod7\right)\Rightarrow9.729^k\equiv2\left(mod7\right)\))

Với \(n=6k+4\)

\(m=5^{6k+4}+3^{6k+4}+1=625.15625^k+81.729^k+1⋮7\)

(vì \(15625\equiv1\left(mod7\right)\Rightarrow15625^k\equiv1\left(mod7\right)\Rightarrow625.15625^k\equiv2\left(mod7\right)\)

\(729\equiv1\left(mod7\right)\Rightarrow729^k\equiv1\left(mod7\right)\Rightarrow81.729^k\equiv4\left(mod7\right)\)

mà \(n\)chẵn suy ra \(n=6k\Rightarrow n⋮3\)

Do đó \(n⋮\left[3,4\right]\Rightarrow n⋮12\).

23 tháng 5 2021
cậu ở minh hải à hoàng hải ơi
14 tháng 10 2016

A B C d M N I K H H' P Q

Gọi d là đường trung bình của tam giác ABC cắt AB,AC lần lượt tại P và Q.Gọi K là giao điểm của đường cao AH' của tam giác ABC và d

=> AH' vuông góc với d

Từ I kẻ IH vuông góc với BC tại H 

Ta suy ra IHH'K là hình chữ nhật vì có ba góc bằng 90 độ => IH = KH'

Mà theo tính chất đường trung bình ta dễ dàng suy ra \(KH'=\frac{1}{2}AH'\) không đổi

Vậy \(IH\)có độ lớn không đổi . Mặt khác BC cố định nên suy ra khi M,N di chuyển thì I chạy trên đường thẳng d được giới hạn bởi PQ

Tập hợp điểm I là : \(I\in PQ\) 

14 tháng 10 2016

A M N E B C F P Q

a/ Vì BM và CQ lần lượt là tia phân giác ngoài của các tia phân giác trong góc B,C nên góc MBN = góc PCQ = 90 độ

Xét tam giác AEN và tam giác BEM có AE = EB ; góc BEM = góc AEN (đối đỉnh) , góc MBE = góc EAN (cùng phụ góc ABN)

=> Tam giác AEN = tam giác BEM (c.g.c) => EM = EN 

Suy ra AMBN là hình bình hành vì tứ giác này có hai đường chéo cắt nhau tại trung điểm mỗi đường

Mà có một góc bằng 90 độ => AMBN là hình chữ nhật

Chứng minh tương tự với tứ giác APCQ

b/ Dễ dàng chứng minh được EF là đường trung bình tam giác ABC => EF // BC (1)

Vì AMBN là hình chữ nhật mà E là giao điểm của hai đường chéo nên M,E,N thẳng hàng (2)

Tương tự APCQ là hình chữ nhật nên P,F,Q thẳng hàng (3)

Theo tính chất hình chữ nhật thì góc ENB góc EBN = góc NBC => MN // BC (4)

Tương tự, ta có PQ // BC (5)

Từ (1) , (2) , (3) , (4) , (5) suy ra M,N,P,Q,E,F thẳng hàng. (Áp dụng tiên đề Ơ-clit)

14 tháng 10 2016

jygvk

11 tháng 10 2016

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)

Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)

Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)

Vậy C = 1

Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1

11 tháng 10 2016

Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)

\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)

11 tháng 10 2016

\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)

\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)

\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

11 tháng 10 2016

Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :

a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)

mà b = x + y

=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :

2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm

<=> 

10 tháng 10 2016

\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)

\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)

\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)

\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)

\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)

x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)

Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)

Suy ra:

\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)

Vậy:

\(x^2y^2-1=x^2.x^2-1=x^4-1\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)

Vậy ta có đpcm

10 tháng 10 2016

CÂU TRẢ LỜI LÀ 6