K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

1. Ta có \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\left(b+c\right)\left(\dfrac{a}{b+c}\right)+\dfrac{b^2}{c+a}+\left(c+a\right)\left(\dfrac{b}{c+a}\right)+\dfrac{c^2}{a+b}+\left(a+b\right)\left(\dfrac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\) (đpcm).

27 tháng 2 2017

2. Ta có: \(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\)

\(\Rightarrow\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_2b_2c_2}=0\)

\(\Rightarrow a_1b_2c_2+b_1a_2c_2+c_1a_2b_2=0\)

Lại có: \(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\)

\(\Rightarrow\left(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}\right)^2=1\)

\(\Rightarrow\dfrac{a_2^2}{a_1^2}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}+2\left(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{a_2c_2}{a_1c_1}\right)=1\)

Mặt khác: \(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{a_2c_2}{a_1c_1}=\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_1b_1c_1}=0\)

Vậy \(\dfrac{a_2^2}{a_1^2}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}=1\) (đpcm)

10 tháng 1 2019

Ta có:

\(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\Rightarrow\left(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}\right)^2=1\)

\(\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}+2\left(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{c_2a_2}{a_1c_1}\right)=1\)

\(\Rightarrow\dfrac{a_2^2}{a^2_1}+\dfrac{b^2_2}{b^2_1}+\dfrac{c^2_2}{c^2_1}+2\left(\dfrac{a_2b_2c_1+b_2c_2a_1+c_2a_2b_1}{a_1b_1c_1}\right)=1\)(1)

Theo giả thiết:

\(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\Leftrightarrow\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_2b_2c_2}=0\)(2)

Từ (1) và (2) suy ra đpcm

10 tháng 1 2019

Đặt \(\dfrac{a_1}{a_2}=p;\dfrac{b_1}{b_2}=q;\dfrac{c_1}{c_2}=r\), có:

\(p+q+r=0\) (1)

\(\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r}=1\) (2)

Từ (2) => \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}+2\dfrac{p+q+r}{pqr}=1\)

Kết hợp với (1), ta được: \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}=1\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b^2_2}{b_1^2}+\dfrac{c_2^2}{c^2_1}=1\left(đpcm\right)\)

3 tháng 12 2016

Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)

Thì bài toán thành

x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)

Chứng minh x2 + y2 + z= 1

Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Từ (1) ta có

(x + y + z)2 = 1

<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0

<=> x2 + y2 + z2 = 1

3 tháng 12 2016

bằng 1 đó chắc chắn lun

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

NV
9 tháng 3 2021

\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

20 tháng 7 2017

1) Từ \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\), suy ra

\(\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\Rightarrow\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự: \(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+ba-a^2}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+bc-b^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)

20 tháng 7 2017

2) Đặt vế trái đẳng thức cần chứng minh là P

Đặt \(A=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\), ta có:

\(A.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)

Tương tự: \(A.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc},A.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)

Vậy \(P=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

P/S: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(Cái này tự chứng minh)

2 tháng 8 2018

cho toán lớp 10 ....Bố nó hiểu

27 tháng 11 2021

1.

Đặt \(\left(x;y;z\right)=\left(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}\right)\Rightarrow\left\{{}\begin{matrix}1-x=\dfrac{b}{b+a}\\1-y=\dfrac{c}{b+c}\\1-z=\dfrac{a}{a+c}\end{matrix}\right.\)

\(\Rightarrow xyz=\dfrac{1}{8}\\ xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\\ \Rightarrow xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)-xyz\\ \Rightarrow2xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)=\dfrac{1}{4}\\ \Rightarrow x+y+z=\dfrac{3}{4}+xy+yz+zx\)

\(\RightarrowĐpcm\)

27 tháng 11 2021

2.

undefined