K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2022

\(\left(x-y\right)^2\ge0;\forall xy\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)

\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\Rightarrow xy\ge4\Rightarrow x+y\ge2\sqrt{xy}\ge2\sqrt{4}=4\)

\(C_{min}=4\) khi \(x=y=2\)

Hoặc là:

\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4}{x+y}\right)^2=\dfrac{8}{\left(x+y\right)^2}\)

\(\Rightarrow\left(x+y\right)^2\ge16\Rightarrow x+y\ge4\)

NV
16 tháng 2 2022

Đề bài sai, C không có giá trị nhỏ nhất

Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C

30 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Xảy ra khi \(x=y=\frac{1}{2}\)

11 tháng 3 2018

áp dùng BDT cô si chúa Pain có

\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)

mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)

\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)

b)

áp dụng BDT cô si ta có

\(x+y\ge2\sqrt{xy}\)

lấy từ câu A ta có \(xy\ge4\) " câu a"

suy ra

\(x+y\ge2\sqrt{4}=4\)

NV
16 tháng 4 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)

\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)

\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)

\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)

\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

13 tháng 6 2021

\(\frac{18}{x}+\frac{2}{y}=1\)

\(\Rightarrow\frac{1}{2}=\frac{9}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{2}=\frac{3^2}{x}+\frac{1}{2}\ge\frac{\left(3+1\right)^2}{x+y}\)

\(\Rightarrow\frac{1}{2}\ge\frac{16}{x+y}\)

\(\Rightarrow x+y\ge32\)

\(\text{Dấu '' = '' xảy ra khi:}\)

\(\orbr{\begin{cases}\frac{3}{x}=\frac{1}{y}\\x+y=32\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3y\\3y+y=32\end{cases}}\)          \(\Rightarrow\orbr{\begin{cases}x=24\\y=8\end{cases}}\)

15 tháng 6 2021

đk : \(ĐK:x\ne0;y\ne0\)

Chia cả 2 vế cho 2, ta được: \(\frac{9}{x}+\frac{1}{y}=\frac{1}{2}\)

Áp dụng bất đẳng thức Svac-sơ : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)

          \(\rightarrow VT\ge\frac{\left(3+1\right)^2}{x+y}\)\(\leftrightarrow\frac{1}{2}\ge\frac{\left(3+1\right)^2}{x+y}=\frac{16}{x+y}\)

                                  \(\Rightarrow x+y\ge32\)

                                  Dấu ''='' xảy ra \(\leftrightarrow\)\(\hept{\begin{cases}x=24\\y=8\end{cases}}\)

                             Vậy : \(Min\left(...\right)=32\leftrightarrow\hept{\begin{cases}x=24\\y=8\end{cases}}\)