K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

NV
5 tháng 1 2021

Bài này chỉ có min, không có max của A nhé bạn

Muốn có max thì x;y;z phải không âm

26 tháng 6 2020

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)

Dấu "=" xảy ra <=> x = y = z = 2

GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2

1 tháng 12 2019

Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.

*Tìm min

Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )

Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)

Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)

\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.

Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)

\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.

*Tìm Max:

Chưa nghĩ ra.

1 tháng 12 2019

Chết,bài tìm min nhầm chút:(dòng 10)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)

Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)

Như vầy nha!

NV
30 tháng 3 2021

\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)

\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)

Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)

\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)

\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)

\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)

\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

1 tháng 9 2021

Chắc dùng Mincowski

AH
Akai Haruma
Giáo viên
23 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

23 tháng 9 2021

Bạn giải giúp mk bằng BĐT Cosi đc k ạ

NV
1 tháng 3 2023

Ta có: \(2x^3+2y^3-\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Tương tự: \(\dfrac{y^3+z^3}{y^2+z^2}\ge\dfrac{y+z}{2}\) ; \(\dfrac{z^3+x^3}{z^2+x^2}\ge\dfrac{z+x}{2}\)

Cộng vế: \(P\ge x+y+z\ge6\)

\(P_{min}=6\) khi \(x=y=z=2\)

NV
21 tháng 1 2021

\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)

\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)

\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)

\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)

\(\Rightarrow P\le2\)

\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị