K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Bất đẳng thức cần chứng minh tương đương với : \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)( * )

cần chứng minh BĐT (*)

Thật vậy, Áp dụng BĐT Cô-si dạng Engel, ta có :

\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

Vậy BĐT đã được chứng minh 

Dấu "=" xảy ra \(\Leftrightarrow\)a = b = c = 1

4 tháng 10 2017

Dề sai. Cho \(a=c=0,b=\sqrt{2}\) thì được

\(0+\frac{2}{\sqrt{2}+1}+\frac{1}{3}\approx1,162>1\)

5 tháng 5 2018

\(a^2+1=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)

tương tự \(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\left(a+b\right)\left(c+a\right)\left(b+c\right)=a^2b+b^2a+c^2a+a^2c+b^2c+c^2b+2abc\)

\(\Rightarrow\)VT=\(a^2b+b^2a+b^2c+c^2b+c^2a+a^2c+3abc\) =\(ab\left(a+b\right)+bc\left(a+b\right)+ca\left(a+b\right)+c\left(ab+bc+ca\right)\)=a+b+c

ta có (a+b+c)^2>=3(ab+bc+ca)=3 nên a+b+c>=căn3(đccm)

NV
21 tháng 2 2021

Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng

Nếu ko có 2 số nào đồng thời bằng 0:

\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)

\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

21 tháng 2 2021

\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc           \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)

áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\)                           \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)

27 tháng 5 2020

Không hiểu sao BĐT dạo này được cập nhật lên khá nhiều,thôi thì làm theo bản năng vậy :))

Do \(a^2+b^2+c^2+abc=4\) nên ta đặt được ẩn phụ dưới dạng 

\(a=\frac{2x}{\sqrt{\left(x+y\right)\left(x+z\right)}};b=\frac{2y}{\sqrt{\left(y+z\right)\left(y+x\right)}};c=\frac{2z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Khi đó BĐT cần chứng minh tương đương với:

\(\Sigma\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}+1\)

Theo AM - GM  thì ta dễ dàng có:

\(\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{x+y}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow LHS\le\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{xy}{\left(x+y\right)\left(y+z\right)}\)

\(=\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{zx}{\left(x+y\right)\left(x+z\right)}\)

\(=\Sigma\frac{x\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}=1+\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

BĐT được chứng minh

11 tháng 6 2020

Cách khác :)))

Theo nguyên lý Dirichlet thì trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu

Giả sử đó là \(a-1;b-1\)

Khi đó:\(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow abc+c\ge ac+bc\)

Vì vậy \(ab+bc+ca-abc\le ab+bc+ca+c-ac-bc=ab+c\)

Ta sẽ chứng minh \(ab+c\le2\)

Thật vậy !

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\Leftrightarrow4-c^2\ge ab\left(c+2\right)\)

\(\Leftrightarrow ab+c\le2\left(đpcm\right)\)

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

2 tháng 1 2018

post ít một thôi