K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

30 tháng 7 2018

\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)

Cứ tiếp tục như vậy ta sẽ có đpcm. dấu = xảy ra khi a=b=c=1

9 tháng 2 2022

áp dụng cách đánh giá :
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\)\(\left(\sqrt{\frac{a^2+b^2}{2}\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}\right)\)

\(hay\sqrt{3\left(a^2+b^2+c^2\right)\ge\sqrt{\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}}\)

Ta cần chỉ ra được :\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, cần chú ý đến \(a^2+b^2+c^2\)Ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

ta cần chứng minh được :

\(\frac{\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(hay\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Dễ thấy\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Do đó\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)

Theo bất đẳng thức Bunhiacopxki

\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)

Do đó ta được

\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Bài toán được chứng minh :333!~

9 tháng 2 2022

Phân tích bài toán.

Ta làm 2 vế đẳng thức xuất hiện đại lượng kiểu\(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\)

Để biến đổi vế trái ta sẽ được:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}-\left(a+b+c\right)\)

Để biến đổi vế phải ta sẽ được:

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

Đến đây ta chỉ cần chỉ ra được \(\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\ge0\)

Bài làm:

Bất đẳng thức cần chứng mình tương đương với:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}-\left(a+b+c\right)\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}-\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}-\frac{c+a}{2}\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\right]\ge0\)

Đặt:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\)

Chứng mình hoàn tất nếu ta chứng mình được A,B.C\(\ge\)0, Vậy:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}=\frac{2\sqrt{2\left(b^2+c^2\right)}+2b+c}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}>0\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}=\frac{2\sqrt{2\left(c^2+a^2\right)+2c+a}}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}>0\)

Vậy biểu thức đã được chứng minh.

11 tháng 9 2021

ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou

hộ mình với:(

11 tháng 9 2021

= mìnk ko biết

sorry

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

9 tháng 9 2018

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\frac{a+2\sqrt{a}+1}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\) 

Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{4\sqrt{b}}{b^3+c^2}\) 

                \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{4\sqrt{c}}{a^3+a^2}\)  

Cộng từng vế: \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)(đpcm)