K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

Chép lại đề bài: ....
Đk: x\(\ge\)1
\(\sqrt[4]{x^2-1}=\sqrt[4]{\left(x-1\right).\left(x+1\right)} \) (1)
chia cả 2 vế cho (1): \(3.\sqrt[4]{\dfrac{x-1}{x+1}}+m.\sqrt[4]{\dfrac{x+1}{x-1}}=1\)    (đk: x>1)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\) (t>0)   => 3t +\(\dfrac{m}{t}\)=1
                                  <=> 3t2  -t+m=0 (2)
Đến đây ta biện luận nghiệm của pt (2) có nghiệm dương

22 tháng 7 2016

đặt t = \(\sqrt{-x^2+2x+15}\) ( đk t >= 0 )

xét hàm f(t) = t^2 - 4t -28 

....tự làm ... 

NV
8 tháng 8 2021

Xét hàm:

\(f\left(x\right)=\sqrt[4]{x^2+1}-\sqrt[]{x}\) với \(x\ge0\)

\(f'\left(x\right)=\dfrac{x}{2\sqrt[4]{\left(x^2+1\right)^3}}-\dfrac{1}{2\sqrt[]{x}}=\dfrac{x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}}{2\sqrt[4]{x^2\left(x^2+1\right)^3}}\)

Ta có: \(\sqrt[4]{\left(x^2+1\right)^3}>\sqrt[4]{\left(x^2+0\right)^3}=x\sqrt[]{x}\Rightarrow x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}< 0\) ; \(\forall x>0\)

\(\Rightarrow\) Hàm nghịch biến trên R \(\Rightarrow f\left(x\right)\le f\left(0\right)=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[4]{x^2+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\left(\sqrt[4]{x^2+1}+x\right)\left(\sqrt[]{x^2+1}+x^2\right)}=0\)

\(\Rightarrow f\left(x\right)>0\) ; \(\forall x>0\)

\(\Rightarrow0< f\left(x\right)\le1\Rightarrow\) phương trình có nghiệm khi \(0< m\le1\)

9 tháng 8 2021

vì saoHàm nghịch biến trên R  \(\Rightarrow f\left(x\right)\le f\left(0\right)\)

NV
27 tháng 1 2022

ĐKXĐ: \(-3\le x\le1\)

\(4+2\sqrt{-x^2-2x+3}=m+1-x^2-2x\)

\(\Leftrightarrow x^2+2x+3+2\sqrt{-x^2-2x+3}=m\)

Đặt \(\sqrt{-x^2-2x+3}=t\in\left[0;2\right]\)

\(\Rightarrow-t^2+2t+6=m\)

Xét hàm \(f\left(t\right)=-t^2+2t+6\) trên \(\left[0;2\right]\)

\(f'\left(t\right)=-2t+2=0\Rightarrow t=1\)

\(f\left(0\right)=6;f\left(1\right)=7;f\left(2\right)=6\Rightarrow6\le m\le7\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

NV
9 tháng 6 2019

Đặt \(\sqrt{1+x^2}-\sqrt{1-x^2}=a\)

\(a^2=2-2\sqrt{1-x^4}\Rightarrow\left\{{}\begin{matrix}0\le a\le\sqrt{2}\\2\sqrt{1-x^4}=2-a^2\end{matrix}\right.\)

Phương trình trở thành:

\(m\left(a+2\right)=2-a^2+a-1\)\(\Leftrightarrow m=\frac{-a^2+a-1}{a+2}\)

Xét \(f\left(a\right)=\frac{-a^2+a-1}{a+2}\Rightarrow f'\left(a\right)=\frac{\left(-2a+1\right)\left(a+2\right)+a^2-a+1}{\left(a+2\right)^2}=\frac{-a^2-4a+3}{\left(a+2\right)^2}\)

\(f'\left(a\right)=0\Rightarrow a=-2+\sqrt{7}\)

\(f\left(0\right)=-\frac{1}{2};f\left(\sqrt{2}\right)=\frac{-8+5\sqrt{2}}{2};f\left(-2+\sqrt{7}\right)=5-2\sqrt{7}\)

\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{1}{2}\le m\le5-2\sqrt{7}\)

NV
9 tháng 6 2019

b/ Xét hàm \(f\left(x\right)=\sqrt{1+x^2}-\sqrt{1-x^2}\)

\(f'\left(x\right)=\frac{x}{\sqrt{1+x^2}}+\frac{x}{\sqrt{1-x^2}}=x\left(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1-x^2}}\right)\)

\(f'\left(x\right)=0\Rightarrow x=0\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;1\right]\) và nghịch biến trên \(\left[-1;0\right]\)

\(f\left(0\right)=0;f\left(1\right)=f\left(-1\right)=\sqrt{2}\)

\(\Rightarrow a=0\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 1 điểm duy nhất (tiếp xúc)

\(0< a\le\sqrt{2}\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Để phương trình đã cho có 4 nghiệm thì \(y=m\) cắt \(y=f\left(a\right)\) tại 2 điểm phân biệt

Dựa vào BBT của câu a ta được: \(\frac{-8+2\sqrt{5}}{2}\le m< 5-2\sqrt{7}\)