K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Bạn chú ý : Bài của bạn cần phải có điều kiện a,b > 0

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{\left|a\right|}{\sqrt{b}}+\frac{\left|b\right|}{\sqrt{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\)(1)

Ta xét : \(A=\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\right)+\left(a+b\right)\)

Áp dụng bất đẳng thức Cauchy được : \(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\frac{ab\sqrt{ab}}{\sqrt{ab}}}=2\sqrt{ab}\)

\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Rightarrow\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (2)

Từ (1) và (2) ta có đpcm

7 tháng 11 2021

a/ Áp dụng BĐT Cô-si cho các số dương ta được

abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c

Tương tự

abc+cab≥2babc+cab≥2b

bca+cab≥2abca+cab≥2a

Cộng các vế của BĐT

2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)

↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c

b/ Áp dụng BĐT Cô-si cho các số dương ta được

abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b

Tương tự

abc+cab≥2aabc+cab≥2a

bca+cab≥2cbca+cab≥2c

Cộng các vế của BĐT

2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)

↔abc+bca+cab≥a+b+c

4 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Cách giải khác đây: 

Áp dụng bđt bunhia copxki ta có \(A^2\le6\left(a+b+c\right)=6\)vì a+b+c=1

nên \(A\le\sqrt{6}\)

Dấu = xảy ra <=>a=b=c=1/3

NV
5 tháng 10 2019

Với a; b dương chứ nhỉ, nằm dưới mẫu thêm điều kiện khác 0, mà không âm + khác 0 thì nó là dương còn gì?

\(\Leftrightarrow\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(\frac{a}{b}+\frac{b}{a}+2\right)}\)

\(\Leftrightarrow\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)^3\le2\left(\frac{a}{b}+\frac{b}{a}+2\right)\)

Đặt \(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}=x\ge2\) BĐT tương đương:

\(x^3\le2\left(x^3-3x+2\right)\)

\(\Leftrightarrow x^3-6x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-2\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x+x-2\right]\ge0\) (luôn đúng)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(x=2\Leftrightarrow a=b\)

6 tháng 10 2019

Haha, dạng này chơi "lầy" kiểu "lập phương hai vế" luôn á:)))

2 tháng 10 2019

\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\)\(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)

=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6

dấu = khi a =b =1

6 tháng 11 2019

mà thôi bt lm rồi

6 tháng 11 2019

batngooaoavuihabucqualeuleu