K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

đồ thì hàm số đi qua điểm M(2;5) 

=>x=2;y=5

thay x=2;y=5 vào y=ax+b ta được:

5=a.2+b

b=5-2a

đồ thì hàm số đi qua điểm N(1/3;0)

=>x=1/3;y=0

thay x=1/3;y=0;b=5-2a ta được:

0=a.1/3+5-2a

a.1/3-2a=-5

a.(1/3-2)=-5

a.(-5/3)=-5

a=3

=>b=5-2.3=-1

Vây a=3;b=-1

16 tháng 7 2017

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.

Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. 

                                                             => IK= KH= x( x>0)

Xét tam giác ABH vuông tại A=> AH2= HK x BH

                                              <=> AH2= x(2x+3). Mà AH= 2 căn 5

=>  x(2x+3)= 20=>x=2.5   

Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

Ta có : AD Là đường p.giác trong tam giác ABC

=> \(\frac{AB}{BD}=\frac{AC}{DC}\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\)

Ta có : \(AB^2=BH.BC\)

           \(AC^2=CH.BC\)

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

TA CÓ : \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\frac{BH}{CH}=\frac{3^2}{4^2}=\frac{9}{16}\)

\(\Rightarrow BH=\frac{9CH}{16}\)

MÀ BH + CH = BC

THẾ VÀO TA CÓ : \(\frac{9CH}{16}+CH=BC\)

\(\Rightarrow25CH=560\)( QUY ĐỒNG 2 VẾ )

\(CH=\frac{560}{25}=22.4\)

\(\Rightarrow BH=BC-22.4=35-22.4=12.6\)

vậy : BH = 12,6 ; BC = 35

:)

20 tháng 8 2015

Kí hiệu \(S,p,r\)  lần lượt là diện tích, nửa chu vi và bán kính đường tròn nội tiếp của tam giác \(ABC.\) Theo công thức tính diện tích tam giác ta có \(S=pr=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c.\)  Từ đó suy ra, bất đẳng thức cần chứng minh tương đương với

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{4r^2}.\)  Đặt \(x=p-a,y=p-b,z=p-c\)   thì \(x,y,z\)  là các số dương và ta có

\(a=y+z,b=z+x,c=x+y,r=\sqrt{\frac{xyz}{x+y+z}}.\)  Thành thử bất đẳng thức tương đương với

\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{x+y+z}{4xyz}.\)  Để chứng minh điều này ta sử dụng bất đẳng thức đơn giản: \(\left(a+b\right)^2\ge4ab\)  với mọi \(a,b\). Khi đó

\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{1}{4xy}+\frac{1}{4yz}+\frac{1}{4zx}=\frac{x+y+z}{4xyz}.\)  (ĐPCM).


 

19 tháng 8 2015

Ta có

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow4\left(x^2+y^2+xy\right)\ge3\left(x^2+y^2+2xy\right)\)

\(\Leftrightarrow2\sqrt{x^2+xy+y^2}\ge\sqrt{3}\left(x+y\right)\).

Vậy chúng ta có \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\). Chứng minh tương tự, \(\sqrt{y^2+yz+z^2}\ge\frac{\sqrt{3}}{2}\left(y+z\right)\), \(\sqrt{z^2+zx+x^2}\ge\frac{\sqrt{3}}{2}\left(z+x\right)\).

Cộng các bất đẳng thức lại ta được \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right).\)

Cuối cùng, để ý rằng \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)  (vì bất đẳng thức tương đương với \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\), luôn đúng).

Suy ra  \(x+y+z\ge\sqrt{3}.\)  Vậy ta có

\(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\ge3.\) (ĐPCM)