K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120 

mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60 

Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC ) 

=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp

18 tháng 5 2021

Mình đến trễ mong undefinedbạn thông cảm lời giải đây ạundefined

13 tháng 5 2018

Với \(a=b=c=\frac{1}{3}\Rightarrow P=2019\)

Ta sẽ chứng minh \(P=2019\) là GTNN của \(P\)

Thật vậy \(2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\ge2019\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-1\right)+\frac{\left(a+b+c\right)^2}{3\left(a^2+b^2+c^2\right)}-1\ge0\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a+b+c\right)\right)+\frac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\Leftrightarrow2018\left(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\right)-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\frac{2018}{b}-\frac{1}{3\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Luôn đúng*

13 tháng 5 2018

\(\sqrt{21+4\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=|2\sqrt{5}+1|=2\sqrt{5}+1\)

Vậy ............

13 tháng 5 2018

Áp dụng bất đẳng thức Cauchy , ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}\)

<=> \(xyz\ge3\sqrt[3]{xyz}\)

<=> \(x^3y^3z^3\ge27xyz\)

<=> \(x^2y^2z^2\ge27\)

<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)

Ta có 

\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)

                                                                                                                  \(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)

Vậy Max = 1/3