K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

bài này hay đấy

Áp dụng BĐT Cô-si cho 3 số không âm, ta có :

\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)

Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )

do a,b,c là số nguyên 

Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng

Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1

Ta có : VT ( 1 ) 

\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)

\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)

\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)

\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)

Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

suy ra đpcm

Áp dụng bđt AM-GM ta có

\(x^4+y^2\ge2x^2y\)

\(x^2+y^4\ge2xy^2\)

\(\Rightarrow M\le\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy..........

31 tháng 12 2019

Sao không nói x , y , z thuộc N cho nhanh bạn

31 tháng 12 2019

Áp dụng BĐT Bunhiacopski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4x+\frac{1}{x}\right)\)

Tương tự:

\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4y+\frac{1}{y}\right)\)

Cộng lại ta được:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4x+4y+\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge\frac{1}{\sqrt{17}}\left[4\left(x+y\right)+\frac{4}{x+y}\right]=\frac{1}{\sqrt{17}}\left(16+1\right)=\sqrt{17}\)

Dấu "=" xảy ra tại x=y=2

A.2

......

Chúc học tốt