30000hm²=?????? ha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Giả sử các học sinh được phát tối đa 4 quyển.
Có 4 x 11 = 44 quyển
Còn thừa 6 quyển
=> Tồn tại ít nhất 1 học sinh được 5 quyển trở lên.
b, Giả sử không có hai bạn nào được phát số sách như nhau.
=> Bạn được phát nhiều nhất là: 10 quyển, bạn được phát ít nhất là 0 quyển.
Có: 0+1+2+...+10 = 55 > 50 quyển
=> Bao giờ cũng tồn tại ít nhất 2 học sinh có 1 số vở như nhau.

Bạn vào thống kê hỏi đáp của mình để xem lời giải nhé !
\(\widehat{EIF}=\frac{\widehat{A}+\widehat{C}}{2}=\frac{180^o}{2}=90^o\) (ĐPCM)

Ta có : \(\frac{x}{4y^2+1}=x-\frac{4xy^2}{4y^2+1};\frac{y}{4x^2+1}=y-\frac{4x^2y}{4x^2+1}\)
Áp dụng BĐT Cauchy ta có :
\(4y^2+1\ge4y;4x^2+1\ge4x\)
\(\Rightarrow x-\frac{4xy^2}{4y^2+1}+y-\frac{4x^2y}{4x^2+1}\ge x-\frac{4xy^2}{4y}+y-\frac{4x^2y}{4x}\)
\(=x+y-2xy=2xy\)
Đến đây ta áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(x+y=4xy\Leftrightarrow\frac{1}{xy}=\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=4\)
\(\Leftrightarrow\frac{1}{xy}\le4\Leftrightarrow2xy\ge\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{4y^2+1}+\frac{y}{4x^2+1}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\4y^2=1\\4x^2=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Bạn trên đã chứng minh \(xy\ge\frac{1}{4}\) rồi nên mình xin phép không trình bày
Áp dụng BĐT Cauchy Schwarz ta dễ có:
\(LHS=\frac{x^2}{4xy^2+x}+\frac{y^2}{4x^2y+y}\)
\(\ge\frac{\left(x+y\right)^2}{4xy\left(x+y\right)+\left(x+y\right)}=\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\)
Ta cần đi chứng minh:
\(\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\ge\frac{1}{2}\)
\(\Leftrightarrow\left(x+y\right)^2\ge x+y\Leftrightarrow x+y\ge1\)
Điều này là hiển nhiên vì theo AM - GM ta có:\(x+y\ge2\sqrt{xy}=1\)
Vậy ta có đpcm

do a>0, b>0 nên 1=a+b+3ab\(\ge3\sqrt[3]{3\left(ab\right)^2}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{3\left(ab\right)^2}\)
\(\Leftrightarrow\frac{1}{27}\ge3\left(ab\right)^2\Leftrightarrow\frac{1}{81}\ge\left(ab\right)^2\Leftrightarrow\frac{1}{9}\ge ab\Leftrightarrow\frac{1}{3}\ge\sqrt{ab}\)do đó
P=\(\frac{6ab}{a+b}-a^2-b^2=\frac{6ab}{a+b}-\left(a^2+b^2\right)\le\frac{6ab}{2\sqrt{ab}}-2ab=-2ab+3\sqrt{ab}=-2\left(ab-\frac{3}{2}\sqrt{ab}\right)\)
\(=-2\left[ab-2\sqrt{ab}\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^2-\frac{5}{6}\sqrt{ab}\right]\)
\(=-2\left(\sqrt{ab}-\frac{1}{3}\right)^2+\frac{2}{9}+\frac{5}{3}\sqrt{ab}\le\frac{2}{9}+\frac{5}{3}\cdot\frac{1}{3}=\frac{7}{9}\)
vậy maxP=\(\frac{7}{9}\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b+3ab=1\end{cases}\Leftrightarrow a=b=\frac{1}{3}}\)


Bài làm:
Ta có: \(A=\frac{5}{4}\div\frac{a}{a+1}=\frac{5}{4}.\frac{a+1}{a}=\frac{5a+5}{4a}\)
\(\Rightarrow4A=\frac{20a+20}{4a}=5+\frac{5}{a}\)
Để 4A là số nguyên
=> \(\frac{5}{a}\inℤ\Rightarrow5⋮a\Rightarrow a\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Thử lại để A là số nguyên thì \(a\in\left\{-5;-1\right\}\)

Nghĩa là :"Dù cái cây có cao bao nhiêu thì nó cũng đã từng là một mầm nhỏ, cần xây đươc đài cao chín tầng thì bắt đầu từ một sọt đất nhỏ, muốn đi xa ngàn dặm cần bắt đầu từ một bước chân" Nói về cội nguồn của mọi vật nhé

\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
Trả lời:
\(30000hm^2=30000ha\)
Bài làm :
\(30000hm^2=30000ha\)
Học tốt