Cho biết \(x,y\inℚ\)và \(x+y=3y\)
Tính \(\frac{1}{x}+\frac{1}{y}\)( với x,y \(\ne0\))
CẦN GẤP
LÀM GIÚP MÌNH NÀO
CẢM ƠN!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x + y =3y nên x = 3y - y
= 2y
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2y}+\frac{1}{y}=\frac{1}{2y}+\frac{2}{2y}=\frac{3}{2y}\)
x + y = 3y
=> x= 3y-y
\(\frac{1}{x}\)= \(\frac{1}{3y-y}\)
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{3y-y}\)+\(\frac{1}{y}\)
= \(\frac{y}{y\left(3y-y\right)}+\frac{3y-y}{y\left(3y-y\right)}\)=\(\frac{y+3y-y}{3y^2-y^2}\)=\(\frac{3y}{y^2\left(3-1\right)}=\frac{3}{2y}\)
Ta có x+y=3y
\(\Rightarrow x=2y\)
Thay vào ta có
\(\frac{1}{2y}+\frac{1}{y}=\frac{1}{2y}+\frac{2}{2y}=\frac{3}{2y}\)